
Learning to Understand
Images

Topic 14
Week 12 – April 3rd, 2019

1

Topic 14: Learning Image Filters

• Problems in Computer Vision
• Computer Vision before 2012

• Object Recognition
• Object Class Recognition
• Deformable Parts Models

• Deep Learning: From Image to Classification
• Neural Networks
• Convolutional Neural Networks

2

Problems in Computer Vision

Object Recognition: What specific object is in this image?

2008 Silver Toyota Camry

Problems in Computer Vision

Object Class Recognition: What type of object is in this image?

Car

Problems in Computer Vision
Semantic Segmentation: Label every pixel in an image

Jeong et al., Sensors, 2018

https://www.researchgate.net/publication/326875064_Towards_a_Meaningful_3D_Map_Using_a_3D_Lidar_and_a_Camera

Problems in Computer Vision

Object Detection: What type of objects are in this picture, and where?

Car

Problems in Computer Vision

Object Detection: What type of objects are in this picture, and where?

Pascal VOC/Ross Girshick

More challenging than it seems! Self-occlusion, clutter, etc

Problems in Computer Vision

Instance Segmentation: Label every pixel, and identify different object
instances

Pascal VOC/Ross Girshick

(Semantic Segmentation) (Instance Segmentation)

Problems in Computer Vision

Counter-intuitively counting objects is much harder for deep networks
than object classification!

Pascal VOC/Ross Girshick

Topic 14: Learning Image Filters

• Problems in Computer Vision
• Computer Vision before 2012

• Object Recognition
• Object Class Recognition
• Deformable Parts Models

• Deep Learning: From Image to Classification
• Neural Networks
• Convolutional Neural Networks

10

Object Recognition using Local Features

• Object recognition: recognizing a
specific instance of an object, e.g.
recognizing a specific model of car
from a specific year and colour

• Input: Image on right
• Output: 2008 Silver Toyota Camry
• Appearance is similar across images,

we can use local features such as
SIFT to try and match to previous
objects seen

Object (Car) Recognition Training Pipeline

Image Dataset

Store in database of
SIFT features vectors

with labels

• Collect many images of different makes/models of cars in different poses
• Label each set of SIFT features with object label, e.g. “2008 Silver Toyota Camry”
• Train a classifier (e.g. SVM, random forest, neural network) on feature vectors

Compute SIFT
features for all

images with label

Object (Car) Recognition Pipeline

Image Input Compute Local Features

Nearest Neighbours

Label

• Calculate SIFT features for current image
• See what set of SIFT feature vectors in DB are close to this image
• Do some extra filtering based on pose given by close SIFT features

Compute SIFT
features for this

image

Classification

2008 Silver
Toyota Camry

Object Class Recognition

• Object Class recognition: recognizing a
general class of objects, e.g. recognizing
a car in general

• Input: Images on right
• Output: Car

Object Class Recognition

• Why is this difficult?
• Cars have a wide variety of appearance
• SIFT features only allow us to compare images

by the local appearance
• Even the same car can have different

appearance, e.g. car doors opened or closed –
real-world objects are often deformable

• Why don’t we just memorize all possible
cars, i.e. treat this as object recognition

• Infeasible in general, too many types
• Humans can recognize cars they’ve never seen

– we want to generalize

Object Class Recognition

• What is common to all cars?
• Wheels, headlights, bumpers, rims, door

handles (usually) – i.e. parts!

• Idea: Why don’t we look for relevant parts?

Part-based Models

• How do we detect parts?
• Typically parts are based on local features such

as HoG or templates
• Let’s assume we can easily find common parts

that belong to cars – have we solved object
class recognition?

Part-based Models

• Are these cars?
• If we classify an image based on seeing

a couple of wheels, we are going to get
yes!

• So we need to ensure there are
different parts present, e.g. bumpers,
door handles, headlights, etc.

Part-based Models

• OK, so we find an image with all relevant
parts – done right?

• This image contains eyes, a mouth, and a
nose.

• We can probably agree it’s not a face!

• It is not enough for the scene to just contain
the parts – they must be in the correct
locations relative to other parts!

Deformable Part Models

• It is not enough for the scene to just
contain the parts – they must be in the
correct locations relative to other parts!

• This is the basic idea behind deformable
part models (DPM)

• Old idea – “Pictorial Structures” 1972
• Need some flexibility for locations to

allow for deformation/difference
between people’s faces

Fischler & Elschlager 1972

Deformable Part Models

Felzenswalb et al., 2010

• Basis of many of the works aimed at
solving object class recognition and the
even harder problem of object detection
before 2012

• General idea: use a pyramid of HoG
features at different scales to find parts

• Weight their relative locations according
to a model of where they should be (for
different poses/views)

Deformable Part Models

• Have to decide how many parts to use
a-priori

• Need to learn different models for
drastically different poses of object

• DPMs are very expensive to
train/optimize – based on graphical
models

Felzenswalb et al., 2010

Topic 14: Learning Image Filters

• Problems in Computer Vision
• Computer Vision before 2012

• Object Recognition
• Object Class Recognition
• Deformable Parts Models

• Deep Learning: From Image to Classification
• Neural Networks: A Crash Course
• Convolutional Neural Networks

23

ImageNet

• Often challenges (i.e. contests) push state of the art

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC typically just called imagenet)

• Many object class recognition datasets had been created (e.g. CIFAR 10/100), but
ImageNet dataset was of a different order of magnitude!

• Training data:
• 1 Million total training images
• Web-resolution images (typically > 100x100)
• 1000 object classes
• 1000 images per class
• 50,000 validation + 50,000 test

Deng, Jia; Dong, Wei; Socher, Richard; Li, Li-Jia; Li, Kai; Fei-Fei, Li,
"ImageNet: A Large-Scale Hierarchical Image Database" , 2009

conference on Computer Vision and Pattern Recognition

Fangyu Cai (Medium)

http://www.image-net.org/papers/imagenet_cvpr09.pdf
https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

Deep Learning

SIFT + fisher vectors + classifier

AlexNet

DPM

• First challenge in 2010

• AlexNet (from U of T!) was a massive
leap in performance, and came out of
the blue

• Neural networks had been out of favour
for many years

• By 2015 had surpassed human accuracy

DNNs

From Wikipedia (modified)

Neural Networks: A Crash Course

• Artificial neural networks were first proposed
in the 1940’s MCulloch & Pitts

• However, what we call neural networks now
are based mostly on research in the 1980s

• In particular backpropagation – a way of
training networks with many layers
(Rumelhart, Hinton 1986)

Neural Networks: A Single Neuron

• 𝒙 is an input vector
• 𝒘 are the learned weights
• 𝑓 is an activation function
• 𝑏 is a bias
• Neuron’s output is a scalar:

𝑦 = 𝑓 '𝑤)𝑥) + 𝑏

Neural Networks: A Single Neuron

𝑦 = 𝑓 '𝑤)𝑥) + 𝑏

• If 𝑓 𝑥 = 𝑥 our neuron describes a line
• With a 1D input, we get:

𝑦 = 𝑤,𝑥, + 𝑏
• 𝑤, is slope, 𝑏 is offset
• In fact, at its very simplest form, fitting a

neuron to a dataset is linear regression!

Neural Networks: Linear Activation Function

𝑦 ='𝑤)𝑥) + 𝑏

𝑦 = 𝒘 ⋅ 𝒙 + 𝑏
(in vector form)

• This in general describes a
hyperplane (2D line, 3D plane)

• A hyperplane splits the whole of an
N-dimensional space into 2!

Neural Networks: Binary Threshold Functions

𝑦 = 𝑓(𝒘 ⋅ 𝒙 + 𝑏)
(in vector form)

• Until the 70s neurons were binary,
based on sign or threshold:

𝑓 𝑥 = sign(𝑥)

𝑓(𝑥) = 40, 𝑥 < 0
1, 𝑥 ≥ 0

• These give a decision boundary

Neural Networks: Activation Functions

𝑦 = 𝑓(𝒘 ⋅ 𝒙 + 𝑏)
(in vector form)

• Modern neural networks use
activation functions with well
defined derivatives

• various types of sigmoids
• rectified linear unit (ReLU)

𝑓 𝑥 = tanh(𝑥)

𝑓(𝑥) = 40, 𝑥 < 0
𝑥, 𝑥 ≥ 0

Neural Networks: Single Layer

• A decision boundary is a very
simple classifier – a single layer
neural network is a collection of
these

• However, many problems need
more than a single decision
boundary

• The most famous such problem is
the XOR function which needs two
hyperplanes

Neural Networks: Multiple Layers

• By having multiple layers, we can
combine decision boundaries!

• In fact it has been shown that a neural
network with a single hidden layer
(i.e. a neural network with 2 or more
layers of neurons) with infinite width
is a universal function approximator

• But how to train neural networks of
multiple layers was not obvious until
the late 80s

Fully-Connected Neural Network

• A general neural network is fully
connected – i.e. every neuron has a
weight for every neuron/input in a
previous layer

• The number of weights can be
massive!

• We know what the input is, and what
the output is, what is the hidden
representation?

• An embedding: like learning a
representation in a different basis, but
with a non-linear transformation! 𝑤),=>

output

input
𝑤),=?

hidden

Neural Networks: Training with SGD in One Slide

• Training data and labels:
𝑋 = 𝒙>, 𝒙?,⋯ , 𝒙B , 𝑇 = {𝑡>, 𝑡?,⋯ , 𝑡B}

• Output of neural network:
𝑌 = 𝑦>, 𝑦?,⋯ , 𝑦B

• We have the true labels, and the output of the network, we can
calculate an error 𝐸, for example Mean Squared Error (MSE) for
regression:

𝐸 =
1
𝑛'

)

𝑡) − 𝑦) ?

• Backpropagation lets us calculate the partial derivative of any
weight in the model W.R.T. the error, no matter which layer it is
on, and out pops our old friend the gradient!

∇𝐸 =
𝜕𝐸
𝜕𝑤)

• Update weights using gradient descent (𝜆 is learning rate)
𝒘NO> = 𝐰Q − 𝜆∇𝐸

Neural Networks: Image Inputs

• Let’s get back to images!
• We can simply feed in an image vector as

the input vector 𝒙
• If we do this, each neuron has the same

number of weights as pixels in the
image!

• Assume image of 𝑀 pixels and 𝑁
neurons in first layer, 𝑁×𝑀 weights in
first layer!

• 32×32 pixels * 10 = 10,240 weights

output

𝑤),=?

Neural Networks: Image Inputs

W
r

g b
H

𝑤),=>

Input Image

⋮

First Layer Weights
𝑤),=>

Neural Network for Images

• With a fully-connected neural network
we are learning massive image-sized
“filters”!

• This is a poor model – should always
try to encode what we know about the
domain (i.e. images) into our model

• We know local features are enough to
represent an image’s
appearance/textures!

• Don’t need whole-image connectivity

W
r

g b
H

𝑤),=>

Input Image

⋮

First Layer Weights
𝑤),=>

Neural Network for Images

c2 filters

h1 w1

c1

…

c1

H
W

• We know that we can model
appearance well based on local
neighbourhoods – i.e. image filters

• Learn spatially small filters
• But now we don’t cover all the pixels

spatially in the image!
• Let’s apply this filter for all pixels in the

image – this is basically image filtering

Input Image Filters
(weights)

Convolutional Layer

c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

• This is a layer from a CNN
(Convolutional Neural Network)

• Learn a set of filters that are
“convolved” over every pixel
spatially in the image

• Every filter outputs a single
image channel per filter

• This stack of output images is
called a feature map

Input Image Filters
(weights) Feature map

(output image)

Convolutional Layer

c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

• This is a layer from a CNN
(Convolutional Neural Network)

𝑌),=,Y = '
Z,[,B

𝑋Z,=O[,)OB 𝐹),Z,[,B

Where 𝑖, 𝑗 are the spatial and k the
channel coord. of the pixel in 𝑌, 𝑚, 𝑛, 𝑙 are
pixel coord. in filter 𝐹
• Actually this is cross-correlation not

convolution!
• You can also think of these filters as

template patches and this as template
matching with cross-correlation

Input Image Filters
(weights) Feature map

(output image)

𝒀𝒊,𝒋,𝒌
𝑿𝒍,𝒎,𝒏

𝑭𝟎,𝒍,𝒎,𝒏

𝑭𝒄𝟐,𝒍,𝒎,𝒏

First Layer Filters and Featuremaps

Convolutional Neural Networks

• Example of first-layer filters learned in a CNN
• Resemble a mixture of edges and Gaussians
• Edge like filters are Gabor-like filters

• Gabor filters are a standard set of steerable
band-pass filters based on Gabor wavelets

• Sinusoids multiplied by Gaussian

• Gaussian-like filters are centre-surround

Convolutional Neural Networks

• CNNs were introduced by Yann LeCun in 1995 for the problem of handwritten digit classification
• Two successive layers of convolution, and subsampling, followed by fully-connected
• Notice the similarity to an image pyramid! Except here we are performing many operations at

different scales

Convolutional Neural Networks
c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

Input Image
/Feature Map

Filters
(weights) Feature map

(output image) Average/Max Pooling
(subsampling)

c2H/2

W/2

• Spatial Pooling (subsampling) gives us:
• Invariance (to translation, rotation, some deformation)
• Ability to learn filters at different scales

Convolutional Neural Networks

c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

Input Image
/Feature Map

Filters
(weights) Feature map

(output image) Average/Max Pooling
(subsampling)

c2H/2
W/2

• The first filters act on images – easy to understand their functions and outputs
• As we go deeper, filters are on feature maps! What are these filters doing?

Convolutional Neural Networks

• Tricky question to answer!
• Visualizing featuremaps

directly doesn’t help much…

conv1

conv5 (after pooling)

Convolutional Neural Networks

• Lots of work on trying to
understand the features
being learned, often with
saliency maps, i.e.
understanding what was
important in the original
image

• Note the parts being
highlighted!

Convolutional Neural Networks v.s. DPMs

• Interpretability is difficult (and a major open problem)
• However, clear that CNNs learn high level concepts by learning parts

• DPM is a good intuition as to what’s going on in a CNN – in fact it has
been shown that a DPM is a CNN (not vice versa)

• Each filter is matching part responses from previous layers and
assembling those responses spatially

• CNN incorporates idea of an image pyramid, and at least the first layer
has band-pass filters

Why This Course Still Matters

• While we don’t handcraft features anymore (i.e. SIFT), we do design
network architectures and training methods

• Hundreds of papers at each conference on how to apply deep learning to
new problems in computer vision – all based on incorporating what we
know about learning from images

• CNNs themselves incorporate aspects of almost everything you’ve learned
about

• Image pyramids, gradients, band-pass filters, convolution, translation invariance,
scale, low-dimensional embeddings (non-linear dimensionality reduction), wavelets
(Gabor), convolution theorem (Gabor)

• And of course you still have to understand where the images themselves
come from…

Convolutional Neural Networks:
The Big Questions
• Understanding why they make decisions is difficult, but important

(Interpretability)
• Can we learn these network architectures (i.e. connectivity) instead of

hand-designing it (Neural Architecture Search)
• CNNs are typically massive (AlexNet is 60 million parameters), and are

definitely overparameterized (Efficient Deep Learning)
• We don’t understand why deep networks generalize so well – all

current theory says they shouldn’t, but empirical evidence disagrees
(Lack of Theory)

Make the most of U of T!

• This is the school that started the deep learning revolution
• Has amongst the best faculty in the world in machine

learning/computer vision
• Reach out and engage with faculty and ask about helping out on

research projects!
• Always better to do this in person – some get thousands of e-mails a day

• This is a good way to decide if you want to do a MSc/PhD or research
• Unfortunately I’m not research faculty here, but I’m happy to help

you decide who to contact

