
Learning to Understand 
Images

Topic 14
Week 12 – April 3rd, 2019

1



Topic 14: Learning Image Filters
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• Neural Networks
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Problems in Computer Vision

Object Recognition: What specific object is in this image?

2008 Silver Toyota Camry



Problems in Computer Vision

Object Class Recognition: What type of object is in this image?

Car



Problems in Computer Vision
Semantic Segmentation: Label every pixel in an image

Jeong et al., Sensors, 2018

https://www.researchgate.net/publication/326875064_Towards_a_Meaningful_3D_Map_Using_a_3D_Lidar_and_a_Camera


Problems in Computer Vision

Object Detection: What type of objects are in this picture, and where?

Car



Problems in Computer Vision

Object Detection: What type of objects are in this picture, and where?

Pascal VOC/Ross Girshick

More challenging than it seems! Self-occlusion, clutter, etc



Problems in Computer Vision

Instance Segmentation: Label every pixel, and identify different object 
instances

Pascal VOC/Ross Girshick

(Semantic Segmentation) (Instance Segmentation)



Problems in Computer Vision

Counter-intuitively counting objects is much harder for deep networks 
than object classification!

Pascal VOC/Ross Girshick
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Object Recognition using Local Features

• Object recognition: recognizing a 
specific instance of an object, e.g. 
recognizing a specific model of car 
from a specific year and colour

• Input: Image on right
• Output: 2008 Silver Toyota Camry
• Appearance is similar across images, 

we can use local features such as 
SIFT to try and match to previous 
objects seen



Object (Car) Recognition Training Pipeline

Image Dataset

Store in database of 
SIFT features vectors 

with labels

• Collect many images of different makes/models of cars in different poses
• Label each set of SIFT features with object label, e.g. “2008 Silver Toyota Camry”
• Train a classifier (e.g. SVM, random forest, neural network) on feature vectors

Compute SIFT 
features for all 

images with label



Object (Car) Recognition Pipeline

Image Input Compute Local Features

Nearest Neighbours

Label

• Calculate SIFT features for current image
• See what set of SIFT feature vectors in DB are close to this image
• Do some extra filtering based on pose given by close SIFT features

Compute SIFT 
features for this 

image

Classification

2008 Silver 
Toyota Camry



Object Class Recognition

• Object Class recognition: recognizing a 
general class of objects, e.g. recognizing 
a car in general

• Input: Images on right
• Output: Car



Object Class Recognition

• Why is this difficult?
• Cars have a wide variety of appearance
• SIFT features only allow us to compare images 

by the local appearance
• Even the same car can have different 

appearance, e.g. car doors opened or closed –
real-world objects are often deformable

• Why don’t we just memorize all possible 
cars, i.e. treat this as object recognition

• Infeasible in general, too many types
• Humans can recognize cars they’ve never seen 

– we want to generalize



Object Class Recognition

• What is common to all cars?
• Wheels, headlights, bumpers, rims, door 

handles (usually) – i.e. parts!

• Idea: Why don’t we look for relevant parts?



Part-based Models

• How do we detect parts?
• Typically parts are based on local features such 

as HoG or templates
• Let’s assume we can easily find common parts 

that belong to cars – have we solved object 
class recognition?



Part-based Models

• Are these cars?
• If we classify an image based on seeing 

a couple of wheels, we are going to get 
yes!

• So we need to ensure there are 
different parts present, e.g. bumpers, 
door handles, headlights, etc.



Part-based Models

• OK, so we find an image with all relevant 
parts – done right?

• This image contains eyes, a mouth, and a 
nose. 

• We can probably agree it’s not a face!

• It is not enough for the scene to just contain 
the parts – they must be in the correct 
locations relative to other parts!



Deformable Part Models

• It is not enough for the scene to just 
contain the parts – they must be in the 
correct locations relative to other parts!

• This is the basic idea behind deformable 
part models (DPM)

• Old idea – “Pictorial Structures” 1972
• Need some flexibility for locations to 

allow for deformation/difference 
between people’s faces

Fischler & Elschlager 1972



Deformable Part Models

Felzenswalb et al., 2010

• Basis of many of the works aimed at 
solving object class recognition and the 
even harder problem of  object detection 
before 2012

• General idea: use a pyramid of HoG
features at different scales to find parts

• Weight their relative locations according 
to a model of where they should be (for 
different poses/views)



Deformable Part Models

• Have to decide how many parts to use 
a-priori

• Need to learn different models for 
drastically different poses of object

• DPMs are very expensive to 
train/optimize – based on graphical 
models

Felzenswalb et al., 2010
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ImageNet

• Often challenges (i.e. contests) push state of the art

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC typically just called imagenet)

• Many object class recognition datasets had been created (e.g. CIFAR 10/100), but 
ImageNet dataset was of a different order of magnitude!

• Training data:
• 1 Million total training images
• Web-resolution images (typically > 100x100)
• 1000 object classes
• 1000 images per class
• 50,000 validation + 50,000 test

Deng, Jia; Dong, Wei; Socher, Richard; Li, Li-Jia; Li, Kai; Fei-Fei, Li, 
"ImageNet: A Large-Scale Hierarchical Image Database" , 2009 

conference on Computer Vision and Pattern Recognition

Fangyu Cai (Medium)

http://www.image-net.org/papers/imagenet_cvpr09.pdf
https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c


Deep Learning

SIFT + fisher vectors + classifier

AlexNet

DPM

• First challenge in 2010

• AlexNet (from U of T!) was a massive 
leap in performance, and came out of 
the blue

• Neural networks had been out of favour 
for many years

• By 2015 had surpassed human accuracy

DNNs

From Wikipedia (modified)



Neural Networks: A Crash Course

• Artificial neural networks were first proposed 
in the 1940’s MCulloch & Pitts

• However, what we call neural networks now 
are based mostly on research in the 1980s

• In particular backpropagation – a way of 
training networks with many layers 
(Rumelhart, Hinton 1986)



Neural Networks: A Single Neuron

• 𝒙 is an input vector
• 𝒘 are the learned weights
• 𝑓 is an activation function
• 𝑏 is a bias
• Neuron’s output is a scalar:

𝑦 = 𝑓 '𝑤)𝑥) + 𝑏



Neural Networks: A Single Neuron

𝑦 = 𝑓 '𝑤)𝑥) + 𝑏

• If 𝑓 𝑥 = 𝑥 our neuron describes a line
• With a 1D input, we get: 

𝑦 = 𝑤,𝑥, + 𝑏
• 𝑤, is slope, 𝑏 is offset
• In fact, at its very simplest form, fitting a 

neuron to a dataset is linear regression!



Neural Networks: Linear Activation Function

𝑦 ='𝑤)𝑥) + 𝑏

𝑦 = 𝒘 ⋅ 𝒙 + 𝑏
(in vector form)

• This in general describes a 
hyperplane (2D line, 3D plane) 

• A hyperplane splits the whole of an 
N-dimensional space into 2!



Neural Networks: Binary Threshold Functions

𝑦 = 𝑓(𝒘 ⋅ 𝒙 + 𝑏)
(in vector form)

• Until the 70s neurons were binary, 
based on sign or threshold:

𝑓 𝑥 = sign(𝑥)

𝑓(𝑥) = 40, 𝑥 < 0
1, 𝑥 ≥ 0

• These give a decision boundary



Neural Networks: Activation Functions

𝑦 = 𝑓(𝒘 ⋅ 𝒙 + 𝑏)
(in vector form)

• Modern neural networks use 
activation functions with well 
defined derivatives

• various types of sigmoids
• rectified linear unit (ReLU) 

𝑓 𝑥 = tanh(𝑥)

𝑓(𝑥) = 40, 𝑥 < 0
𝑥, 𝑥 ≥ 0



Neural Networks: Single Layer

• A decision boundary is a very 
simple classifier – a single layer 
neural network is a collection of 
these

• However, many problems need 
more than a single decision 
boundary

• The most famous such problem is 
the XOR function which needs two 
hyperplanes



Neural Networks: Multiple Layers

• By having multiple layers, we can 
combine decision boundaries!

• In fact it has been shown that a neural 
network with a single hidden layer 
(i.e. a neural network with 2 or more 
layers of neurons) with infinite width 
is a universal function approximator

• But how to train neural networks of 
multiple layers was not obvious until 
the late 80s



Fully-Connected Neural Network

• A general neural network is fully 
connected – i.e. every neuron has a 
weight for every neuron/input in a 
previous layer

• The number of weights can be 
massive!

• We know what the input is, and what 
the output is, what is the hidden 
representation?

• An embedding: like learning a 
representation in a different basis, but 
with a non-linear transformation! 𝑤),=>

output

input
𝑤),=?

hidden



Neural Networks: Training with SGD in One Slide

• Training data and labels:
𝑋 = 𝒙>, 𝒙?,⋯ , 𝒙B , 𝑇 = {𝑡>, 𝑡?,⋯ , 𝑡B}

• Output of neural network: 
𝑌 = 𝑦>, 𝑦?,⋯ , 𝑦B

• We have the true labels, and the output of the network, we can 
calculate an error 𝐸, for example Mean Squared Error (MSE) for 
regression:

𝐸 =
1
𝑛'

)

𝑡) − 𝑦) ?

• Backpropagation lets us calculate the partial derivative of any 
weight in the model W.R.T. the error, no matter which layer it is 
on, and out pops our old friend the gradient!

∇𝐸 =
𝜕𝐸
𝜕𝑤)

• Update weights using gradient descent (𝜆 is learning rate)
𝒘NO> = 𝐰Q − 𝜆∇𝐸



Neural Networks: Image Inputs

• Let’s get back to images! 
• We can simply feed in an image vector as 

the input vector 𝒙
• If we do this, each neuron has the same 

number of weights as pixels in the 
image!

• Assume image of 𝑀 pixels and 𝑁
neurons in first layer, 𝑁×𝑀 weights in 
first layer!

• 32×32 pixels * 10 = 10,240 weights



output

𝑤),=?

Neural Networks: Image Inputs

W
r

g b
H

𝑤),=>

Input Image

⋮

First Layer Weights
𝑤),=>



Neural Network for Images

• With a fully-connected neural network 
we are learning massive image-sized 
“filters”!

• This is a poor model – should always 
try to encode what we know about the 
domain (i.e. images) into our model

• We know local features are enough to 
represent an image’s 
appearance/textures!

• Don’t need whole-image connectivity

W
r

g b
H

𝑤),=>

Input Image

⋮

First Layer Weights
𝑤),=>



Neural Network for Images

c2 filters

h1 w1

c1

…

c1

H
W

• We know that we can model 
appearance well based on local 
neighbourhoods – i.e. image filters

• Learn spatially small filters
• But now we don’t cover all the pixels 

spatially in the image!
• Let’s apply this filter for all pixels in the 

image  – this is basically image filtering

Input Image Filters
(weights)



Convolutional Layer

c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

• This is a layer from a CNN 
(Convolutional Neural Network)

• Learn a set of filters that are 
“convolved” over every pixel 
spatially in the image

• Every filter outputs a single 
image channel per filter

• This stack of output images is 
called a feature map

Input Image Filters
(weights) Feature map

(output image)



Convolutional Layer

c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

• This is a layer from a CNN 
(Convolutional Neural Network)

𝑌),=,Y = '
Z,[,B

𝑋Z,=O[,)OB 𝐹),Z,[,B

Where 𝑖, 𝑗 are the spatial and k the 
channel coord. of the pixel in 𝑌, 𝑚, 𝑛, 𝑙 are 
pixel coord. in filter 𝐹
• Actually this is cross-correlation not 

convolution!
• You can also think of these filters as 

template patches and this as template 
matching with cross-correlation

Input Image Filters
(weights) Feature map

(output image)

𝒀𝒊,𝒋,𝒌
𝑿𝒍,𝒎,𝒏

𝑭𝟎,𝒍,𝒎,𝒏

𝑭𝒄𝟐,𝒍,𝒎,𝒏



First Layer Filters and Featuremaps



Convolutional Neural Networks

• Example of first-layer filters learned in a CNN
• Resemble a mixture of edges and Gaussians
• Edge like filters are Gabor-like filters

• Gabor filters are a standard set of steerable 
band-pass filters based on Gabor wavelets

• Sinusoids multiplied by Gaussian

• Gaussian-like filters are centre-surround



Convolutional Neural Networks

• CNNs were introduced by Yann LeCun in 1995 for the problem of handwritten digit classification
• Two successive layers of convolution, and subsampling, followed by fully-connected
• Notice the similarity to an image pyramid! Except here we are performing many operations at 

different scales



Convolutional Neural Networks
c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

Input Image
/Feature Map

Filters
(weights) Feature map

(output image) Average/Max Pooling
(subsampling)

c2H/2

W/2

• Spatial Pooling (subsampling) gives us:
• Invariance (to translation, rotation, some deformation)
• Ability to learn filters at different scales



Convolutional Neural Networks

c2 filters

h1 w1

c1

…

c1

H
W

c2H
W

∗

Input Image
/Feature Map

Filters
(weights) Feature map

(output image) Average/Max Pooling
(subsampling)

c2H/2
W/2

• The first filters act on images – easy to understand their functions and outputs
• As we go deeper,  filters are on feature maps! What are these filters doing?



Convolutional Neural Networks

• Tricky question to answer!
• Visualizing featuremaps

directly doesn’t help much…

conv1

conv5 (after pooling)



Convolutional Neural Networks

• Lots of work on trying to 
understand the features 
being learned, often with 
saliency maps, i.e. 
understanding what was 
important in the original 
image

• Note the parts being 
highlighted!



Convolutional Neural Networks v.s. DPMs

• Interpretability is difficult (and a major open problem)
• However, clear that CNNs learn high level concepts by learning parts

• DPM is a good intuition as to what’s going on in a CNN – in fact it has 
been shown that a DPM is a CNN (not vice versa)

• Each filter is matching part responses from previous layers and 
assembling those responses spatially

• CNN incorporates idea of an image pyramid, and at least the first layer 
has band-pass filters



Why This Course Still Matters

• While we don’t handcraft features anymore (i.e. SIFT), we do design 
network architectures and training methods

• Hundreds of papers at each conference on how to apply deep learning to 
new problems in computer vision – all based on incorporating what we 
know about learning from images

• CNNs themselves incorporate aspects of almost everything you’ve learned 
about

• Image pyramids, gradients, band-pass filters, convolution, translation invariance, 
scale, low-dimensional embeddings (non-linear dimensionality reduction), wavelets 
(Gabor), convolution theorem (Gabor)

• And of course you still have to understand where the images themselves 
come from…



Convolutional Neural Networks: 
The Big Questions
• Understanding why they make decisions is difficult, but important 

(Interpretability )
• Can we learn these network architectures (i.e. connectivity) instead of 

hand-designing it (Neural Architecture Search)
• CNNs are typically massive (AlexNet is 60 million parameters), and are 

definitely overparameterized (Efficient Deep Learning)
• We don’t understand why deep networks generalize so well – all 

current theory says they shouldn’t, but empirical evidence disagrees 
(Lack of Theory)



Make the most of U of T!

• This is the school that started the deep learning revolution
• Has amongst the best faculty in the world in machine 

learning/computer vision
• Reach out and engage with faculty and ask about helping out on 

research projects!
• Always better to do this in person – some get thousands of e-mails a day

• This is a good way to decide if you want to do a MSc/PhD or research
• Unfortunately I’m not research faculty here, but I’m happy to help 

you decide who to contact


