Topic 13:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Building Panoramic Image Mosaics

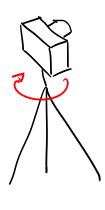
Input images

If automatically created mosoric

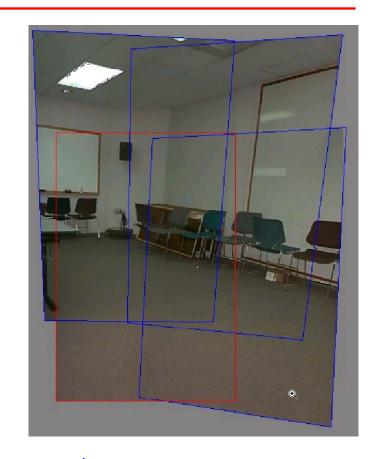
Image Mosaicing

Technique:

Take multiple photos while rotating camera on a tripod (or by hand)



- 2 Warp & align the Photos
- 3) Blend photos to compute final mosaic



* In general, photos must be warped to align their contents!

Step 1: Capture

Important:

- . Camera should change orientation, not position
- . Keep camera settings (gouin, focus, speed, aperture) fixed if possible

Step 2: Warp & Align

V 28/57 images aligned

Step 2: Warp & Align (Continued)

1) 57/57 images aligned

Step 3: Blend

Laplacian Pyramid Blending W seams not visible anymore

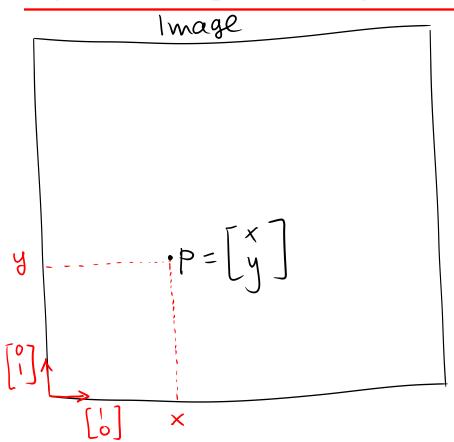
Brown & Lowe; ICCV 2003) google "Lowe Brown Autostitch"

Topic 12:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Representing Pixels by Euclidean 2D Coordinates

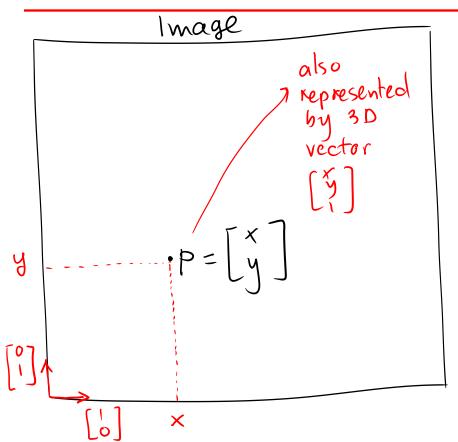


"Standard" (Fuclidean)
representation of an image
point p:

$$P = x \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
basis vectors

Euclideau coordinates

Euclidean Coordinates ⇒ Homogeneous Coordinates

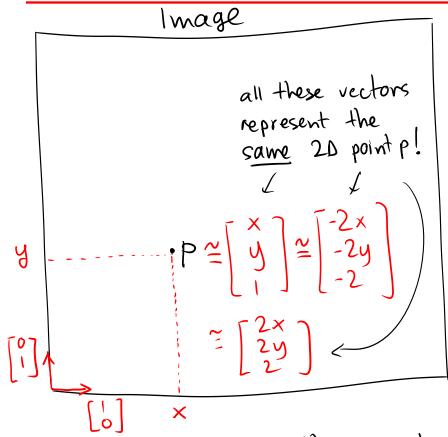


"Standard" (Fuclidean)
representation of an image
point p:

$$P = X \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

· Homogeneous (a.t.a. Projective)
representation of p

2D Homogeneous Coordinates: Definition



For any $0 \neq 0$, the numbers $0 \neq 0$, $0 \neq 0$, the numbers $0 \neq 0$, $0 \neq 0$, are called the homogeneous coordinates of point P

Definition:

Homogeneous representation of p

· Homogeneous (a.t.a. Projective)
representation of p

2D Homogeneous Coordinates: Equality

Image all these vectors represent the same 2D point p! $P \approx \begin{bmatrix} x \\ y \end{bmatrix} \approx \begin{bmatrix} -2x \\ -2y \\ -2 \end{bmatrix}$ ~ [2x] ~

Definition (Homogeneous Equality)

Two vectors of homogeneous coords $V_1 = \begin{bmatrix} x \\ y \end{bmatrix}$ and $V_2 = \begin{bmatrix} x' \\ y' \end{bmatrix}$ are

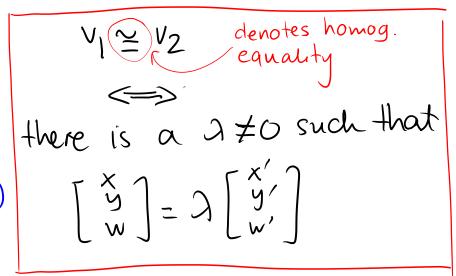
called equal if they

represent the same 2D

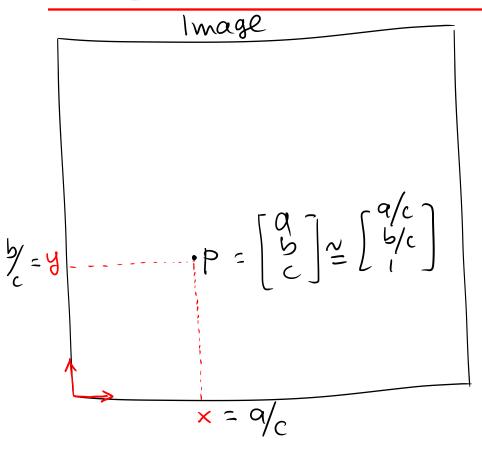
point:

Examples:

$$|S| = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \approx \begin{bmatrix} 6 \\ 8 \\ 12 \end{bmatrix}$$
? Yes
 $|S| = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \approx \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes
 $|S| = \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes
 $|S| = \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes
 $|S| = \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes
 $|S| = \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes
 $|S| = \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes
 $|S| = \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes
 $|S| = \begin{bmatrix} 0 \\ 3e \end{bmatrix}$? Yes



Homogeneous Coordinates ⇒ Euclidean Coordinates



Converting from homogeneous to Euclidean coordinates:

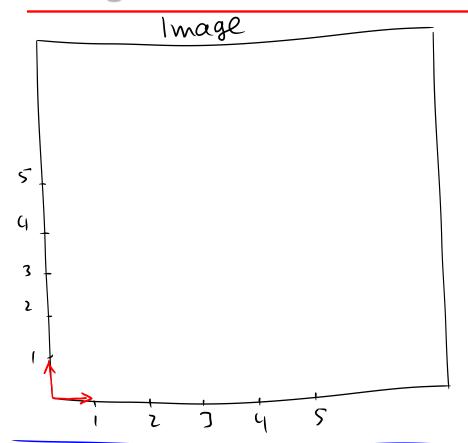
$$\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a/c \\ b/c \end{bmatrix}$$
 represent the same 2D point

$$V_1 \cong V_2$$

There is a $\lambda \neq 0$ such that

$$\begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Homogeneous Coordinates \Rightarrow Euclidean Coordinates

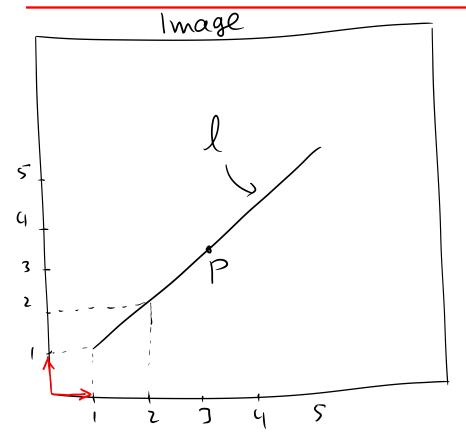


Converting from homogeneous to Euclidean coordinates:

$$P_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$
 $P_2 = \begin{bmatrix} 10 \\ 0 \\ 2 \end{bmatrix}$

$$P_{1} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$
 $P_{2} = \begin{bmatrix} 10 \\ 0 \\ 2 \end{bmatrix}$ $P_{3} = \begin{bmatrix} 0 \\ 8 \\ 4 \end{bmatrix}$ $P_{4} = \begin{bmatrix} 1 \\ 0 \\ 0.0001 \end{bmatrix}$ $P_{5} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Line Equations in Homogeneous Coordinates



. The equation of a line

$$ax + by + c = 0$$

line parameters

. In homogeneous coordinates

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

or (.p=0

Example: line y=x in homogeneous coords:

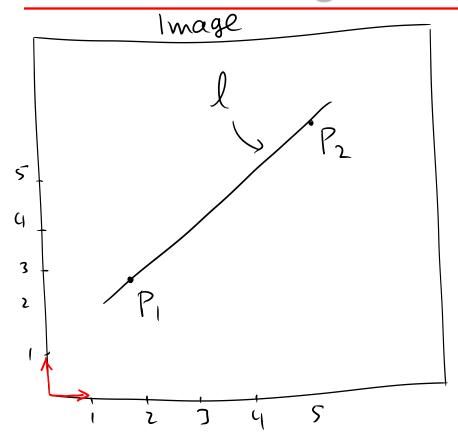
vector holding line parameters

vector holding

homogeneous wordinates

of a point

The Line Passing Through 2 Points



Collculating the parameters of a line through two points with homogeneous coordinates P., Pz

. In homogeneous coordinates

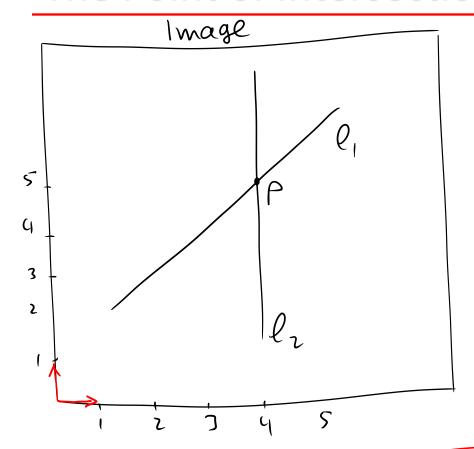
$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

or $(\cdot p = 0)$

· taken as 3D vectors, e is perpendicular to both p, and Pz

=) it is along the cooss product, pixpz

The Point of Intersection of Two Lines



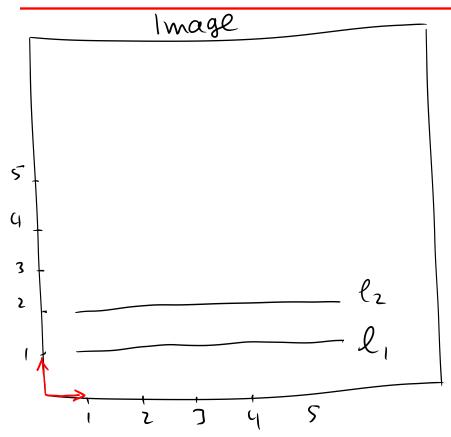
Conculating the homogeneous coordinates of the intersection of two lines l, lz

· la homogeneous coordinates

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

or $l \cdot p = c$

Computing the Intersection of Parallel Lines

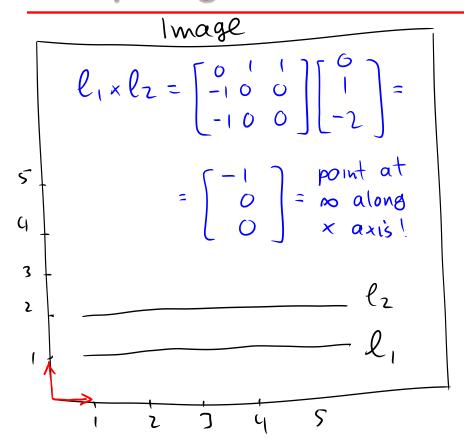


Collculating the homogeneous coordinates of the intersection of two lines l, lz

This calculation works even when li, lz are parallel!

(no floating point exceptions or divide-by-zero errors!)

Computing the Intersection of Parallel Lines



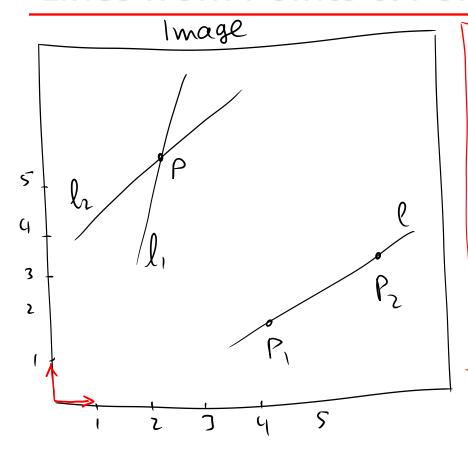
Collculating the homogeneous coordinates of the intersection of two lines l, lz

·Line eq. of
$$l_1$$
 is $y=1$. Also written as $0 \cdot x + 1 \cdot y - 1 = 0$. So $l_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$. Similarly $l_2 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$

Aside (calculating cross products): If
$$l_{1z}(a,b,c)$$

then $l_{1} \times l_{2z} = \begin{bmatrix} 0-c & b \\ c & 0 & -a \end{bmatrix} l_{2}$

Lines from Points & Points from Lines



Useful property #2

- · Very simple way of computing 2 intersecting lines
- · Numerical stability even when result is out so

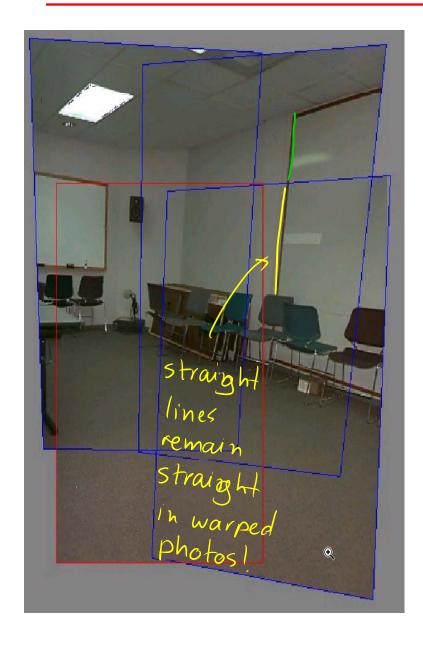
Intersection of 2 lines

Topic 12:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Linear Image Warps

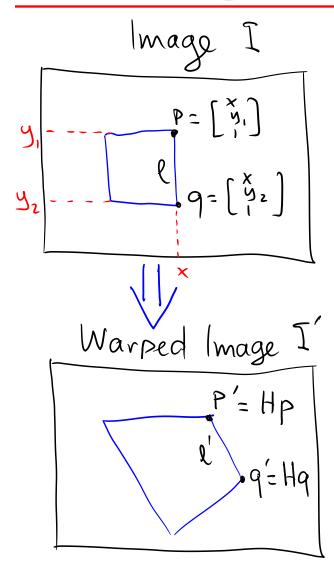


Basic Insight:

lo align multiple photos for mosaicing we must warp then in a way that preserves all lines

(i.e. lines before warping remain lines after warping)

Linear Image Warps & Homographies



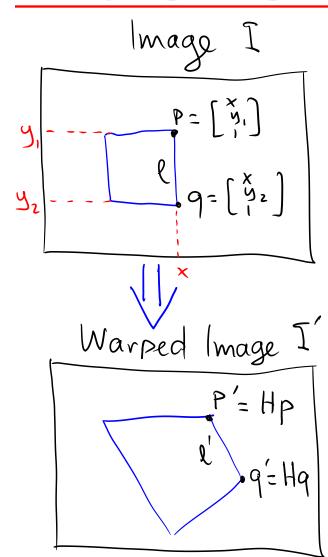
The matrix H is called a Homography

· Definition (Linear Image Warps)

An image warp is called linear if every 2D line I in the original image is transformed into a line I'm the warped image (i.e. the warp preserves all lines in the original photo)

· Property (w/out proof)

Every linear warp can be expressed as a 3x3 matrix H that transforms homogeneous image coordinates



The matrix H is called a Homography

· Linear warping equation

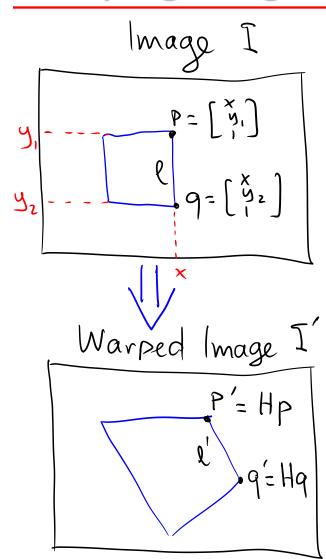
$$I(P) = I'(HP)$$

intensity at pixel in source image with homogeneous coordinates p

image with homogeneous coordinates p'z Hp

· Property (w/out proof)

Every linear warp can be expressed as a 3×3 matrix H that transforms homogeneous image coordinates



· Linear warping equation

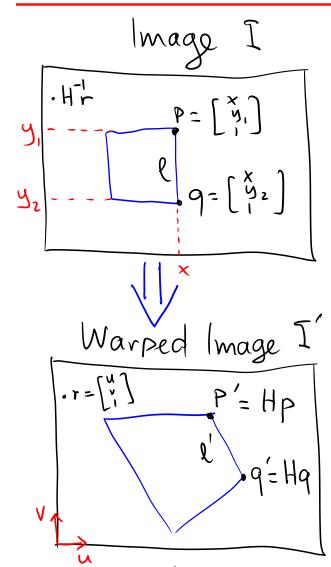
$$I(P) = I'(HP)$$

intensity at pixel in source image with homogeneous coordinates p intensity at pixel in warped image with homogeneous coordinates p'z Hp

Note: Scaling It by a factor 210 does not change the homography:

$$(A.H)_{p} = H(A_{p}) \cong H_{p}$$

The matrix H is called a Homography



The matrix H is called a Homography

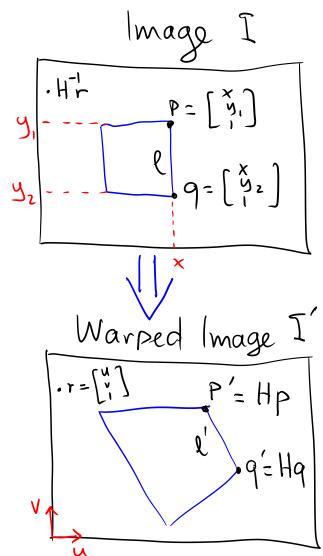
· Linear warping equation

$$I(P) = I'(HP)$$

$$I(H_r) = I(r)$$

· Property (w/out proof)

Every linear warp can be expressed as a 3x3 matrix H that transforms homogeneous image coordinates



· Linear warping equation
$$I'(['])=I(H'['])$$

$$I(Hr)=I(r)$$

- · Computing warp I' from I and H
 - 1 Compute H-1
 - (u,v) In warped Image:
 -compute [2]=H-1[4]
 - -copy color from 5(a/c,b/c)

Homographies & Image Mosaicing

Useful property #3

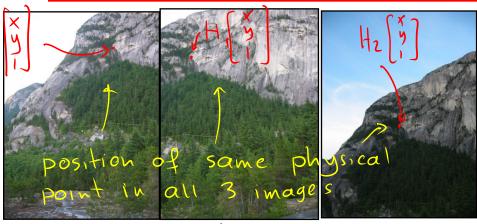
· Every photo taken from a tripod-mounted camera is related by a homography

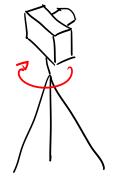
Assumptions:

Image plane
Center of projection

- . No lens distortions . Camerais center of
 - Cameras Center of projection does not move while camera is mounded on tripod

Homographies & Image Mosaicing





Useful property #3

· Every photo taken from a tripod-mounted camera is related by a homography

. These homographies are unknown

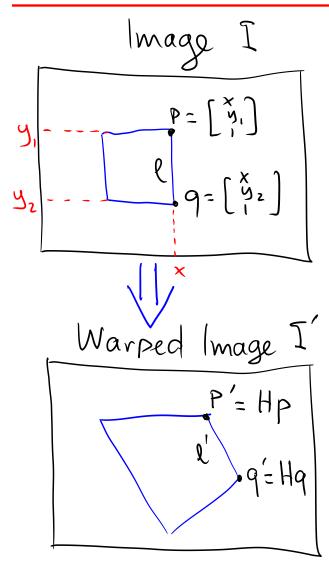
To align these photos for mosaicing we must estimate Hs, Hz,... etc

Topic 12:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

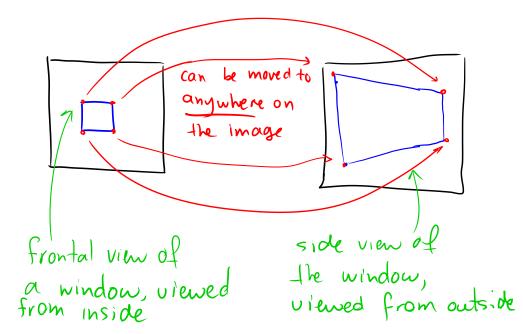
Homography Estimation: Basic Intuition



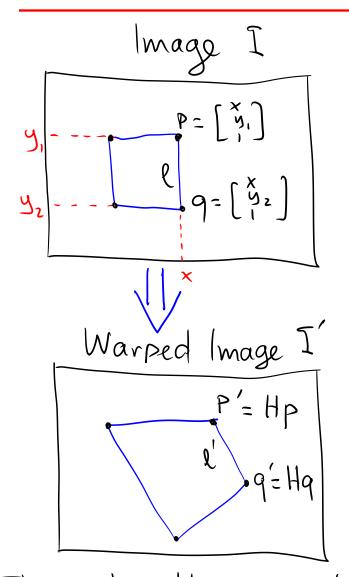
The matrix H is called a Homography

· Intuition

Linear warps correspond to every possible distortion of a square created by moving its vertices to arbitrary locations

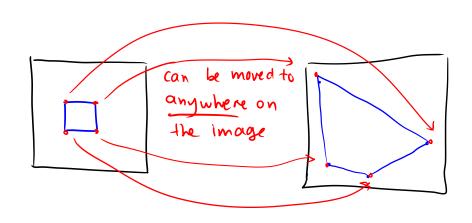


Estimating Homographies from Point Correspondences



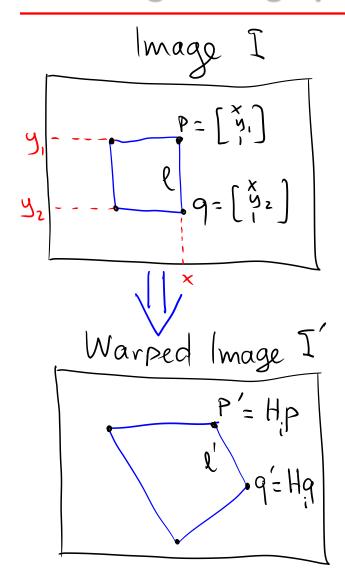
· Intuition

If we have a correspondence between 4 points in the two images, we can compute It



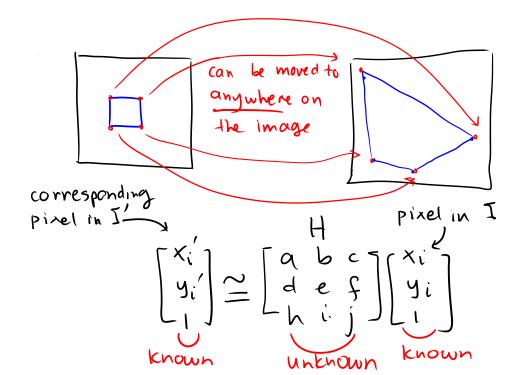
The matrix H is called a Homography

Estimating Homographies from Point Correspondences

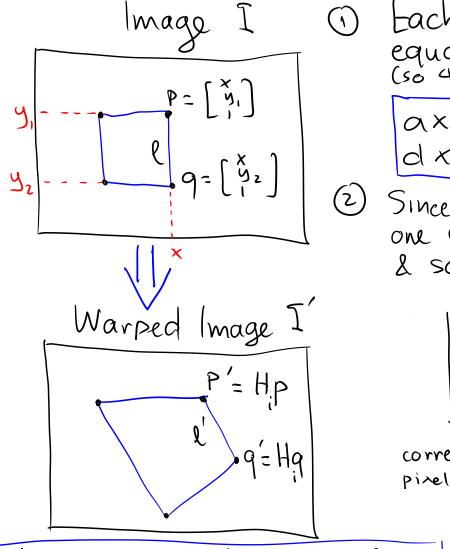


· Intuition

If we have a correspondence between 4 points in the two images, we can compute It:

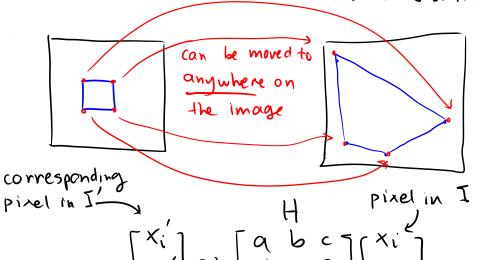


Homography Estimation by Solving Linear System



Each correspondence gives 2 linear equations in the 9 unknowns (so 4 correspondences => 8 eqs, 9 unknowns)

2) Since any multiple of H will do, we pick one element and set it to one (e.g. 1-1) & solve a sustem with 8 eas & 8 unknown,



$$x_i'=(ax_i+by_i+c)/(hx_i+ky_i+l) \Leftrightarrow$$

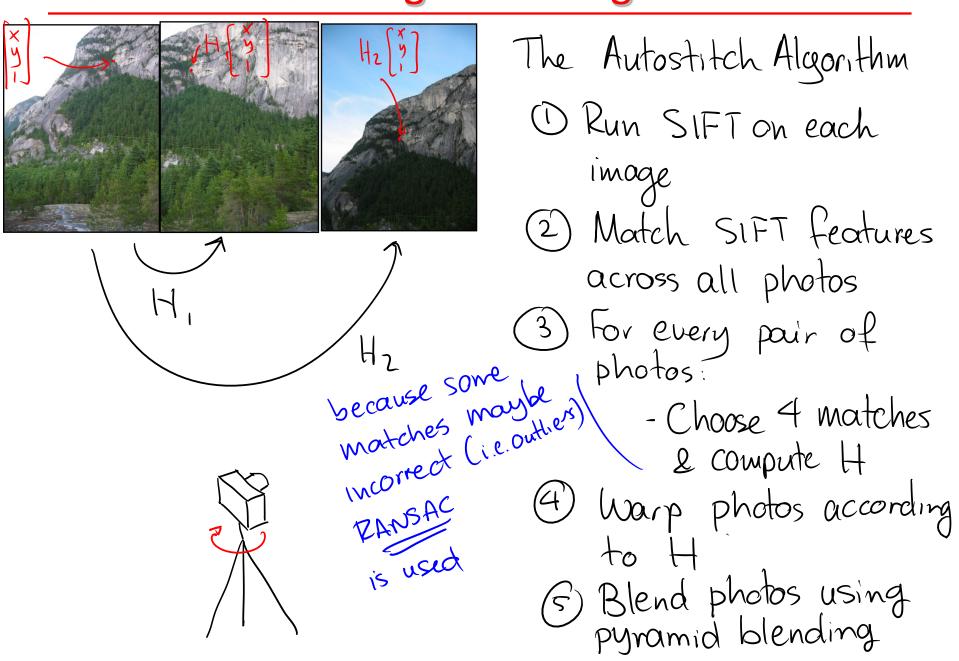
 $x_i'(hx_i+ky_i+l)-(ax_i+by_i+c)=0$

Topic 11:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Feature-Based Image Matching



Building Panoramic Image Mosaics

Input images

If automatically created mosoric

What You Will Take Away ...

#1: Yes, math IS useful in CS!!

#2: How to turn math into pictures

#3: Basics of image analysis & manipulation

#4: How to read research papers

Visual Computing Principles

Imaging essentials

Understanding pixel intensity & color

Image representation & transformation

Image ⇔ 2D array of pixels

Camera response functions
Pixel representations & matting

Image ⇔ continuous 2D function

Poly fitting, WLS, RANSAC Derivative estimation

Gradients, Laplacian

Edge detection

Image ⇔ n-dimensional vector

Correlation, conv, PCA,

Filtering ⇔ derivative computations

Smoothing

Hierarchical image representations

Fourier analysis

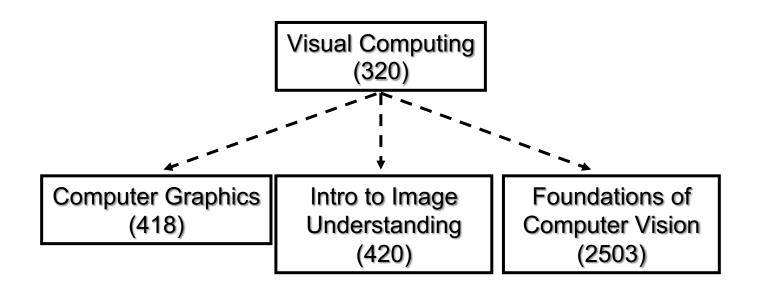
Pyramids, wavelets

Homogeneous representations

Scale-space representations, SIFT

+ Applications: Alpha matting, inpainting, morphing, mosaicking, feature matching...

Where does this course fit in?



- CSC320 is not a pre-requisite for these courses
- Math foundations are the same, and will help to understand the foundations of these topics