
Topic 11: 
 
Feature Detection &  
Image Matching

• Introduction to the image matching problem
• Image matching using SIFT features
• The SIFT feature detector
• The SIFT descriptor

The Image Matching Problem

Goal:
Identify “features” or
patches in image I that
appear in another image, I’

Im
ag

e
I

Im
ag

e
I’

The Image Matching Problem
Im

ag
e

I
Im

ag
e

I’

Indicates a
correspondence
between location
(x, y) in image I
and location (x’, y’)
in image I’

(x, y)

(x’, y’)

The Image Matching Problem
Im

ag
e

I
Im

ag
e

I’

patch p

Q:
Is it possible to solve
this problem by direct
template matching
between two images?

The Image Matching Problem
Im

ag
e

I
Im

ag
e

I’

Q:
Is it possible to solve
this problem by direct
template matching
between two images?

patch p

corresponding
patch p’

The Image Matching Problem

Q:
Is it possible to solve
this problem by direct
template matching
between two images?

A:
Yes, but it would be
impossibly inefficient
(ie. must search over
all possible pairs of
patches)

Im
ag

e
I

Im
ag

e
I’

patch p

corresponding
patch p’

Feature-Based Image Matching
Im

ag
e

I
Im

ag
e

I’

Feature
detection &
matching

Feature-Based Image Matching
Im

ag
e

I
Im

ag
e

I’

Detect
features
in I

Detect
features
in I’

Match
features
across
the two
images

Errors in Feature-Based Image Matching
Im

ag
e

I
Im

ag
e

I’

In general, some/many of
these correspondences may
be incorrect.
Two types of error:
1. False positive matches

algorithm returns a
correspondence between 2
locations where none exists

2. False negative matches
algorithm fails to detect a
correspondence between
two instances of the same
feature/patch.

(x, y)

(x’, y’)

Errors in Feature-Based Image Matching
Im

ag
e

I
Im

ag
e

I’

GOAL: minimize false positive
and false negatives across a
wide range of imaging
conditions.
1. False positive matches

algorithm returns a
correspondence between 2
locations where none exists

2. False negative matches
algorithm fails to detect a
correspondence between
two instances of the same
feature/patch.

(x, y)

(x’, y’)

Evaluating a Feature Detector’s Performance
Im

ag
e

I
Im

ag
e

I’

0 1

1
good
performance

poor
performance

ideal
performance

correct
matches
= true
positives
(as
fraction
of total)

incorrect matches = false
positives (as fraction of total)

Feature Matching & Transformation Invariance
So

ur
ce

 Im
ag

e
I “Transformed” source images

To be most useful,
the feature detector
& matching
algorithm must be
insensitive to a wide
range of image
transformations.

?

Transformation-Invariant Feature Detectors
So

ur
ce

 Im
ag

e
I “Transformed” source images

?

A feature detector is
called invariant to a
certain image
transformation if it
can reliably detect
features in a
transformed version
of the source image

Transformation-Invariant Feature Detectors

A feature detector is
called invariant to a
certain image
transformation if it
can reliably detect
features in a
transformed version
of the source image

So
ur

ce
 Im

ag
e

I “Transformed” source images

?

Brightness transformation

Transformation-Invariant Feature Detectors
“Transformed” source images

A feature detector is
called invariant to a
certain image
transformation if it
can reliably detect
features in a
transformed version
of the source image

So
ur

ce
 Im

ag
e

I

?
Distortion due
to change in
viewpoint

Transformation-Invariant Feature Detectors
“Transformed” source images

A feature detector is
called invariant to a
certain image
transformation if it
can reliably detect
features in a
transformed version
of the source image

So
ur

ce
 Im

ag
e

I

?

Distortion due
to change in
viewpoint &
magnification
(ie. scale)

Topic 11: 
 
Feature Detection &  
Image Matching

• Introduction to the image matching problem
• Image matching using SIFT features
• The SIFT feature detector
• The SIFT descriptor

SIFT: Scale Invariant Feature Transform
• Developed by David Lowe in 1999
• One of the most powerful representations for

feature detection and matching
• Widely used in applications that range from

robotics, to image retrieval & recognition,
image stitching, video analysis.

Image Matching Using SIFT Features

Image Matching Using SIFT Features

Viewpoint

⇒

⇒

Image Matching Using SIFT Features

Scale +
Viewpoint

⇒

⇒

Image Matching Using SIFT Features
Im

ag
e

I
Im

ag
e

I’

Compute
SIFT
features
in I

Compute
SIFT
features
in I’

Match
SIFT
features
across
the two
images

The SIFT Feature Detection Algorithm
Represent an image I as a collection of SIFT features
that can be identified reliably in other images where
the same (or similar) objects are present.

Goal:

Input:
Image I

Output:
A set of k SIFT
keypoints {p1, p2,
…, pk} & feature
vectors {f1, f2, …,
fk}.

“Source” image I “Query” image I

The SIFT Feature Detection Algorithm
Represent an image I as a collection of SIFT features
that can be identified reliably in other images where
the same (or similar) objects are present.

Goal:

Input:
Image I

Output:
A set of k SIFT
keypoints {p1, p2,
…, pk} & feature
vectors {f1, f2, …,
fk}.

“Source” image I “Query” image I

The SIFT Keypoints
Keypoint: A location (x, y) in the source image,

with an associated orientation & scale,
that is “visually distinct” from its
surroundings.

Input:
Image I

Output:
A set of k SIFT
keypoints

pi = (xi, yi, ρi, θi)

“Source” image I Detected keypoints

location

scale orientation

pi

pj

length
denotes
scale

The SIFT Feature Vectors

Feature vector (of a keypoint pi): A vector of fixed
length that represents the image patch centred at
pi.

Detected keypoints
Input:

Image I

Output:
A set of k
keypoints

A set of k
feature vectors

pi = (xi, yi, ρi, θi)
location

scale orientation

fi = ……

describes the patch
centred at pi

Representing an Image Using SIFT Features: Steps
Source Image I 1. Identify keypoints 2. Build feature

vectors

⇒ ⇒

f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

The number k of
detected keypoints
depends on I

The dimension of
each feature
vector is the same
for all images.

⇒

Matching 2 Images Using SIFT Features
Im

ag
e

I
Im

ag
e

I’

⇒

⇒ ⇒

f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

f′ �1 =
……

f′ �2 = ……
f′ �3 = ……

f′ �k−1 =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match
feature
vectors in the
two sets:
{f1, f2, …, fk}
and
{f’1, f’2, …, f’k}

Matching 2 Images Using SIFT Features

⇒

Im
ag

e
I

Im
ag

e
I’

⇒

⇒ ⇒

f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

f′ �1 =
……

f′ �2 = ……
f′ �3 = ……

f′ �k−1 =
……

f′ �k = ……

⋮

1. Identify keypoints
2. Build feature
vectors 3. Match vectors

Step 1: Compute a Set of Keypoints

⇒

Source image I 1. Identify keypoints
Goals:
• Identify

distinctive image
locations

• Assign scale &
orientation to
each keypoint

• Should be able
to detect some
keypoint in
images that vary
in magnification,
brightness, etc.

Keypoint: A location (x, y) in the source image,
with an associated orientation & scale,
that is “visually distinct” from its
surroundings.

Input:
Image I

Output:
A set of k SIFT
keypoints

pi = (xi, yi, ρi, θi)

“Source” image I Detected keypoints

location

scale orientation

pi

pj

length
denotes
scale

Step 1: Compute a Set of Keypoints

Topic 11: 
 
Feature Detection &  
Image Matching

• Introduction to the image matching problem
• Image matching using SIFT features
• The SIFT feature detector
• The SIFT descriptor

Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG
pyramid

Step 1c

Locate
extrema of
DOG
pyramid

Step 1a

Build
pyramid of
Gauss-
smoothed
images

Step 1e

Prune set of
extrema

Step 1d
Refine
location of
DOG
extrema

Step 1f

Assign
orientation
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema

Step 1a: Construct a Gauss-like Pyramid
Step 1a: Compute a pyramid of Gauss-filtered

images organized into octaves of s + 1
images

each image is smoothed by a
factor of k more than the
image below it

Is =
⋮
I2 =
I1 =
I0 =

Step 1a: Construct a Gauss-like Pyramid

each image is smoothed by a
factor of k more than the
image below it

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

SIFT
terminology

An octave is a set of Gauss-convolved
images, I1, …, IS representing a doubling
of the scale parameter σ between I1 and
IS.

each
octave
contains
s + 1
images

Step 1a: Construct a Gauss-like Pyramid
Step 1a: Compute a pyramid of Gauss-filtered

images organized into octaves of s + 1
images

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

each
octave
contains
s + 1
images

images in next octave are
subsampled and stored at
1/2 resolution of previous
octave

s = 3 (3 images/octave)
σ = 1.6 (for first octave)

In practice:

Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG
pyramid

Step 1c

Locate
extrema of
DOG
pyramid

Step 1a

Build
pyramid of
Gauss-
smoothed
images

Step 1e

Prune set of
extrema

Step 1d
Refine
location of
DOG
extrema

Step 1f

Assign
orientation
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema

Step 1b: Compute Pyramid of DOG Images
Step 1b: Compute a pyramid of DOG-filtered

images

D(x, y, ρ) = I(x, y) * (G(x, y, kρ) − G(xy, ρ))
for ρ = σ, kσ, k2σ, …, kS−1σ

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

each
octave
contains
s + 1
images

D(x, y, kSσ)

D(x, y, σ)

Step 1b: Compute Pyramid of DOG Images
Step 1b: Compute a pyramid of DOG-filtered

images

D(x , y, ρ) = I(x , y) * (G (x , y, kρ) − G (x y, ρ))
for ρ = σ, kσ, k2σ, …, kS−1σ

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

each
octave
contains
s + 1
images

D(x, y, kSσ)

D(x, y, σ)

Reminder: Difference-of-Gaussian Filtering

original

I * Gρ

Reminder: Difference-of-Gaussian Filtering

I * Gkρ

Reminder: Difference-of-Gaussian Filtering

Difference of
two Gaussian-
smoothed
versions of I:

But we know
that

I * Gkρ−
I * Gρ =
I * (Gkρ − Gρ)

(just the difference
between two
Gaussian masks)

Gkρ − Gρ =

kρ(kρ − ρ)∇2Gρ

D(x, y, ρ) = [∇2(I * Gρ)] ρ2k(k − 1)⟹

⟹

Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG
pyramid

Step 1c

Locate
extrema of
DOG
pyramid

Step 1a

Build
pyramid of
Gauss-
smoothed
images

Step 1e

Prune set of
extrema

Step 1d
Refine
location of
DOG
extrema

Step 1f

Assign
orientation
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema

Step 1c: Detecting DOG Extrema
Step 1c (Extremum detection): Find all pixels

that correspond to extrema of D(x, y, 𝜌)
Extrema of the image Laplacian are readily
distinguishable from their surroundings. There are
usually just a few thousand in each pyramid.

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)

The Difference-Of-Gaussians (DOG) Filter

Finding local
extrema in a
single image
D(x, y, 𝜌)

• minimum at
(x, y) if
D(x,y,𝜌) < all
neighbours

• maximum if
D(x,y,𝜌) > all
neighbours

>>
> >>

> >>

> >
>> >

>> >

(x, y)

(x, y)

Step 1c: Detecting DOG Extrema
Step 1c (Extremum detection): Find all pixels

that correspond to extrema of D(x, y, 𝜌)

finding extrema in
a “stack” of images

must also be
< than all
neighbours in
adjacent
scales

must also be
> than all
neighbours in
adjacent
scales

or

ρk

ρ

ρ /k

Step 1c: Detecting DOG Extrema
Step 1c (Extremum detection): Find all pixels

that correspond to extrema of D(x, y, 𝜌)

finding extrema in
a “stack” of images

must also be
< than all
neighbours in
adjacent
scales

must also be
> than all
neighbours in
adjacent
scales

or

ρk

ρ

ρ /k

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)

Step 1c: Detecting DOG Extrema: Algorithm

Step 1c (Extremum detection): Find all pixels
that correspond to extrema of D(x, y, 𝜌)

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)

For each (x, y, 𝜌), check whether D(x, y, 𝜌) is greater than (or
smaller than) all of its neighbours in current scale and adjacent
scales above & below.

Step 1c: SIFT Keypoints = DOG Extrema
Step 1c (Extremum detection): Find all pixels

that correspond to extrema of D(x, y, 𝜌)

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)

An extremum detected at D(x, y, 𝜌) defines
the keypoint (x, y, 𝜌).

Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG
pyramid

Step 1c

Locate
extrema of
DOG
pyramid

Step 1a

Build
pyramid of
Gauss-
smoothed
images

Step 1e

Prune set of
extrema

Step 1d
Refine
location of
DOG
extrema

Step 1f

Assign
orientation
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema

• The original SIFT method/paper just uses
the pixel location of the extrema as the
location of the key point

• Revised method finds the subpixel location
interpolated location of the extrema using
2nd order Taylor expansion of D at (x, y, 𝜌)

• This improves the results when matching
significantly

Step 1d: Refining Location of Extrema
Step 1d (Extremum localization) Refine the location of
detected extrema through a quadratic least-squares fit.

Step 1d: Refining Location of Extrema
2nd order Taylor expansion of D at (x, y, 𝜌):

D(Δ ⃗x) = D(⃗x)+(∂D
∂ ⃗x)

T

⋅ Δ ⃗x

+
1
2

(Δ ⃗x)T ⋅
∂2D
∂ ⃗x 2

⋅ (Δ ⃗x)

1.

2. Take derivatives with respect to Δ ⃗x

∂D
∂(Δ ⃗x)

= (∂D
∂ ⃗x)

T

+ (∂2D
∂ ⃗x 2)(Δ ⃗x)

3. Extremum ⇔ derivative is zero ⇒ solve for
∂D

∂Δ ⃗x
= 0

(Δ ⃗x) = (∂2D
∂ ⃗x 2)

−1

⋅ (∂D
∂ ⃗x)

Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG
pyramid

Step 1c

Locate
extrema of
DOG
pyramid

Step 1a

Build
pyramid of
Gauss-
smoothed
images

Step 1e

Prune set of
extrema

Step 1d
Refine
location of
DOG
extrema

Step 1f

Assign
orientation
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema

Step 1e: Pruning “Insignificant” Extrema
Step 1e (Extremum pruning): Prune all extrema that are
weak or that correspond to edges

Condition for detecting a
“strong” extremum (x′ �i, y′�i, ρ′�i)

|D(x′ �i, y′�i, ρ′�i) | = large
in practice, > 0.03

assumes image I has pixel
intensities in the range [0, 1]

D(x, y, kSσ)

D(x, y, σ)

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

Step 1e: Pruning “Insignificant” Extrema

D(x, y, kSσ)

D(x, y, σ)

Step 1e (Extremum pruning): Prune all extrema that are
weak or that correspond to edges

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

corner-like extremum edge-like extremum

position is
well-
constrained

position along
edge is not
constrained

∙ ∙

keep prune

D(x′�i, y′�i, ρ′�i)

Step 1e: Pruning “Insignificant” Extrema
Step 1e (Extremum pruning): Prune all extrema that are
weak or that correspond to edges

corner-like extremum edge-like extremum

position is
well-
constrained

position along
edge is not
constrained

∙ ∙

keep prune

D(x′�i, y′�i, ρ′�i)

Step 1e: Pruning “Insignificant” Extrema
Step 1e (Extremum pruning): Prune all extrema that are
weak or that correspond to edges

corner-like extremum edge-like extremum

position is
well-
constrained

position along
edge is not
constrained

∙ ∙

keep prune

D(x′�i, y′�i, ρ′�i)

H =
∂2D
∂x2

∂2D
∂x∂y

∂2D
∂x∂y

∂2D
∂y2

Compute hessian H of
D(x, y, ρ′�i) at (x, y) = (x′�i, y′�i)

Prune if Tr2(H)
Det(H)

> (r + 1
r)

2

where for SIFT r = 10

Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG
pyramid

Step 1c

Locate
extrema of
DOG
pyramid

Step 1a

Build
pyramid of
Gauss-
smoothed
images

Step 1e

Prune set of
extrema

Step 1d
Refine
location of
DOG
extrema

Step 1f

Assign
orientation
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema

Step 1f: Keypoint Orientation Assignment
Assigning an orientation θi to keypoint (x′ �i, y′�i, ρ′�i) :

I * Gρ′�i A. Compute smoothed
image

B. Compute gradient
magnitude &
orientation in
neighbourhood of

C. Compute histogram
of orientations

D. Assigned orientation
θi = highest peak in
histogram

(x′�i, y′�i) in I * Gρ′ �i

Gradient direction

x′�i

y′�i

Histogram

gradient
orientation

w
ei

gh
t

10∘ 20∘ 30∘ ⋯ 360∘

Step 1f: Keypoint Orientation Assignment

Histogram

gradient
orientation

w
ei

gh
t

10∘ 20∘ 30∘ ⋯ 360∘

I * Gρ′�i

Computing Histogram of Orientations

• Orientations divided into
36 bins (one every 10
degrees).

• Pixel (x, y) contributes to
the bin corresponding to
the gradient orientation
θ at (x, y).

• Contribution to the bin is
equal to

• Total bin weight = sum
of contributions from all
pixels

Gradient
direction

∙

|∇I(x, y) | ⋅ G1.5ρ′�i(d)x′ �i x

y′�i

y
d

∙ θ

highest peak

Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG
pyramid

Step 1c

Locate
extrema of
DOG
pyramid

Step 1a

Build
pyramid of
Gauss-
smoothed
images

Step 1e

Prune set of
extrema

Step 1d
Refine
location of
DOG
extrema

Step 1f

Assign
orientation
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema

Topic 11: 
 
Feature Detection &  
Image Matching

• Introduction to the image matching problem
• Image matching using SIFT features
• The SIFT feature detector
• The SIFT descriptor

The SIFT Keypoints
Keypoint: A location (x, y) in the source image,

with an associated orientation & scale,
that is “visually distinct” from its
surroundings.

Input:
Image I

Output:
A set of k SIFT
keypoints

pi = (xi, yi, ρi, θi)

“Source” image I Detected keypoints

location

scale orientation

pi

pj

length
denotes
scale

The SIFT Feature Vectors

Feature vector (of a keypoint pi): A vector of fixed
length that represents the image patch centred at
pi.

Detected keypoints
Input:

Image I

Output:
A set of k
keypoints

A set of k
feature vectors

pi = (xi, yi, ρi, θi)
location

scale orientation

fi = ……

describes the patch
centred at pi

Building the SIFT Descriptor
Image patch

centred at (xi, yi) SIFT Descriptor

1. Compute gradients in
16 x 16 pixel patch of
image  
centred at

I * Gσi

(xi, yi)
Gaussian-smoothed image
at scale of the keypoint

xi

yi
θi

Building the SIFT Descriptor
Image patch

centred at (xi, yi) SIFT Descriptor

1. Compute gradients in
16 x 16 pixel patch of
image  
centred at

I * Gσi

(xi, yi)

xi

yi
θi

2. Compute gradient orientation
relative to keypoint orientation

θ(x, y) = tan−1
∂(I * Gσi

)
∂y /

∂(I * Gσi
)

∂x
− θi

θ(x, y)

Building the SIFT Descriptor
Image patch

centred at (xi, yi) SIFT Descriptor

1. Compute gradients
2. Compute relative

gradient orientations

xi

yi
θi

3. Compute orientation
histogram of each 4x4 pixel
block 
Histogram contains 8 bins,
each covering 45º

θ(x, y)
length represents
“content” of each bin

Image patch
centred at (xi, yi)

The Orientation Histogram
of a 4x4 pixel block

xi

yi
θiθ(x, y)

The 4x4 Orientation Histogram

y

x

0∘

45∘90∘135∘

180∘

225∘

270∘ 315∘

θ(x, y)
θ1

θ2

Weight of (x, y) :
w = G σi

2 (∥(x − xi, y − yi)∥)
⇒ pixels closer to keypoint centre
have higher weight

Total contribution of (x, y) to
the orientation histograms:
C(x, y) = w ⋅ ∥∇I * Gσi

(x, y)∥

gradient magnitude of smoothed image

Building the SIFT Descriptor
Image patch

centred at (xi, yi) SIFT Descriptor

Contribution spread across 2 closest
orientations & 3 closest histograms

xi

yi
θiθ(x, y)

no abrupt changes in histogram if
keypoint centre displaced by 3 - 4
pixels

⇒

Total contribution of (x, y) to
the orientation histograms:
C(x, y) = w ⋅ ∥∇I * Gσi

(x, y)∥

θ1 θ2

θ1 θ2 θ1 θ2

Building the SIFT Descriptor
Image patch

centred at (xi, yi) SIFT Descriptor

Contribution spread across 2 closest
orientations & 3 closest histograms

xi

yi
θiθ(x, y)

no abrupt changes in histogram if
keypoint centre displaced by 3 - 4
pixels

⇒

θ1 θ2

θ1 θ2 θ1 θ2

Example: fraction allocated to

orientation 1:

orientation 2:

θ1

θ1 + θ2θ2

θ1 + θ2

Building the SIFT Descriptor
Image patch

centred at (xi, yi) SIFT Descriptor

1. Compute gradients
2. Compute relative gradient

orientations
3. Define an “accumulator”

variable for each of the 8

xi

yi
θi

orientations in each of the 16
histograms (128 total).
4. For each pixel, calculate the pixel’s
contribution to each accumulator
variable.

θ(x, y)
length represents
“content” of each bin

Converting SIFT Descriptors to 128-dim Vectors
SIFT Descriptor

length represents
“content” of each bin

Post processing:
1. Normalize fi :

fi →
fi

∥fi∥

gives invariance to linear lighting
variations across images, ie. when
matching image I and image aI + b
(because fi will be the same in both
images)

⇒

2. Clamp fi :
Clamp all elements of fi at 0.2
gives less weight to very large
gradient magnitudes

⇒
fi = ***

128

3. Re-normalize

⇒

Matching 2 Images Using SIFT Features
Im

ag
e

I
Im

ag
e

I’

⇒

⇒ ⇒

f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

f′ �1 =
……

f′ �2 = ……
f′ �3 = ……

f′ �k−1 =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match
feature
vectors in the
two sets:
{f1, f2, …, fk}
and
{f’1, f’2, …, f’k}

⇒

Matching 2 Images Using SIFT Features
Im

ag
e

I
Im

ag
e

I’

⇒

⇒ ⇒

f1 = ……
f2 = ……
fi = ……

fk−1 = ……
fk = ……

⋮

f′ �1 = ……
f′ �j** = ……

f′ �3 = ……

f′ �j* =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match fi
a. Compute ∥fi − f′ �j∥

for all j
b. Compute

fraction

ϕ =
∥fi − f′ �j*∥
∥fi − f′ �j**∥

where f′�j* is the
closest descriptor
 in I′ � and f′ �j** is
2nd-closest.

c. Match fi to f′�j* if
ϕ < 0.8

Matching 2 Images Using SIFT Features
Im

ag
e

I
Im

ag
e

I’

f1 = ……
f2 = ……
fi = ……

fk−1 = ……
fk = ……

⋮

f′ �1 = ……
f′ �j** = ……

f′ �3 = ……

f′ �j* =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match fi
a. Compute ∥fi − f′ �j∥

for all j
b. Compute

fraction

ϕ =
∥fi − f′ �j*∥
∥fi − f′ �j**∥

where f′�j* is the
closest descriptor
 in I′ � and f′ �j** is
2nd-closest.

c. Match fi to f′�j* if
ϕ < 0.8

Intuition for
matching
algorithm:

match
established
only if it is
deemed
reliable, ie. if
there is only
one very
similar feature
in image I’

