
Topic 11: 
 
Feature Detection &  
Image Matching

• Introduction to the image matching problem
• Image matching using SIFT features 
• The SIFT feature detector
• The SIFT descriptor



The Image Matching Problem

Goal:
Identify “features” or 
patches in image I that 
appear in another image, I’
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Indicates a 
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between location 
(x, y) in image I 
and location (x’, y’) 
in image I’
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The Image Matching Problem

Q:
Is it possible to solve 
this problem by direct 
template matching 
between two images?

A:
Yes, but it would be 
impossibly inefficient 
(ie. must search over 
all possible pairs of 
patches)
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Feature-Based Image Matching
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Errors in Feature-Based Image Matching
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In general, some/many of 
these correspondences may 
be incorrect.
Two types of error:
1. False positive matches

algorithm returns a 
correspondence between 2 
locations where none exists

2. False negative matches
algorithm fails to detect a 
correspondence between 
two instances of the same 
feature/patch.
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Errors in Feature-Based Image Matching
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GOAL: minimize false positive 
and false negatives across a 
wide range of imaging 
conditions.
1. False positive matches

algorithm returns a 
correspondence between 2 
locations where none exists

2. False negative matches
algorithm fails to detect a 
correspondence between 
two instances of the same 
feature/patch.

(x, y)

(x’, y’)



Evaluating a Feature Detector’s Performance
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0 1

1
good 
performance

poor 
performance

ideal 
performance

correct 
matches 
= true 
positives 
(as 
fraction 
of total)

incorrect matches = false 
positives (as fraction of total)



Feature Matching & Transformation Invariance
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I “Transformed” source images

To be most useful, 
the feature detector 
& matching 
algorithm must be 
insensitive to a wide 
range of image 
transformations.

?



Transformation-Invariant Feature Detectors
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certain image 
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can reliably detect 
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transformed version 
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Transformation-Invariant Feature Detectors

A feature detector is 
called invariant to a 
certain image 
transformation if it 
can reliably detect 
features in a 
transformed version 
of the source image
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Transformation-Invariant Feature Detectors
“Transformed” source images

A feature detector is 
called invariant to a 
certain image 
transformation if it 
can reliably detect 
features in a 
transformed version 
of the source image

So
ur

ce
 Im
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I

?

Distortion due 
to change in 
viewpoint & 
magnification 
(ie. scale)



Topic 11: 
 
Feature Detection &  
Image Matching

• Introduction to the image matching problem
• Image matching using SIFT features  
• The SIFT feature detector
• The SIFT descriptor



SIFT: Scale Invariant Feature Transform
• Developed by David Lowe in 1999
• One of the most powerful representations for 

feature detection and matching
• Widely used in applications that range from 

robotics, to image retrieval & recognition, 
image stitching, video analysis.

Image Matching Using SIFT Features



Image Matching Using SIFT Features

Viewpoint

⇒

⇒



Image Matching Using SIFT Features

Scale + 
Viewpoint

⇒

⇒



Image Matching Using SIFT Features
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Compute 
SIFT 
features 
in I

Compute 
SIFT 
features 
in I’

Match 
SIFT 
features 
across 
the two 
images



The SIFT Feature Detection Algorithm
Represent an image I as a collection of SIFT features 
that can be identified reliably in other images where 
the same (or similar) objects are present.

Goal: 

Input:
Image I

Output:
A set of k SIFT 
keypoints {p1, p2, 
…, pk} & feature 
vectors {f1, f2, …, 
fk}.

“Source” image I “Query” image I



The SIFT Feature Detection Algorithm
Represent an image I as a collection of SIFT features 
that can be identified reliably in other images where 
the same (or similar) objects are present.

Goal: 

Input:
Image I

Output:
A set of k SIFT 
keypoints {p1, p2, 
…, pk} & feature 
vectors {f1, f2, …, 
fk}.

“Source” image I “Query” image I



The SIFT Keypoints
Keypoint: A location (x, y) in the source image, 

with an associated orientation & scale, 
that is “visually distinct” from its 
surroundings.

Input:
Image I

Output:
A set of k SIFT 
keypoints

pi = (xi, yi, ρi, θi)

“Source” image I Detected keypoints

location

scale orientation

pi

pj

length 
denotes 
scale



The SIFT Feature Vectors

Feature vector (of a keypoint pi): A vector of fixed 
length that represents the image patch centred at 
pi.

Detected keypoints
Input:

Image I

Output:
A set of k 
keypoints

A set of k 
feature vectors

pi = (xi, yi, ρi, θi)
location

scale orientation

fi = ……

describes the patch 
centred at pi



Representing an Image Using SIFT Features: Steps
Source Image I 1. Identify keypoints 2. Build feature 

vectors

⇒ ⇒

f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

The number k of 
detected keypoints 
depends on I

The dimension of 
each feature 
vector is the same 
for all images.



⇒

Matching 2 Images Using SIFT Features
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f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

f′ �1 =
……

f′ �2 = ……
f′ �3 = ……

f′ �k−1 =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match 
feature 
vectors in the 
two sets:
{f1, f2, …, fk}
and
{f’1, f’2, …, f’k}



Matching 2 Images Using SIFT Features

⇒
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⇒

⇒ ⇒

f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

f′ �1 =
……

f′ �2 = ……
f′ �3 = ……

f′ �k−1 =
……

f′ �k = ……

⋮

1. Identify keypoints
2. Build feature 
vectors 3. Match vectors



Step 1: Compute a Set of Keypoints

⇒

Source image I 1. Identify keypoints
Goals:
• Identify 

distinctive image 
locations

• Assign scale & 
orientation to 
each keypoint

• Should be able 
to detect some 
keypoint in 
images that vary 
in magnification, 
brightness, etc.



Keypoint: A location (x, y) in the source image, 
with an associated orientation & scale, 
that is “visually distinct” from its 
surroundings.

Input:
Image I

Output:
A set of k SIFT 
keypoints

pi = (xi, yi, ρi, θi)

“Source” image I Detected keypoints

location

scale orientation

pi

pj

length 
denotes 
scale

Step 1: Compute a Set of Keypoints
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• The SIFT descriptor



Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG 
pyramid

Step 1c

Locate 
extrema of 
DOG 
pyramid

Step 1a

Build 
pyramid of 
Gauss-
smoothed 
images

Step 1e

Prune set of 
extrema

Step 1d
Refine 
location of 
DOG 
extrema

Step 1f

Assign 
orientation 
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema



Step 1a: Construct a Gauss-like Pyramid
Step 1a: Compute a pyramid of Gauss-filtered 

images organized into octaves of s + 1 
images

each image is smoothed by a 
factor of k more than the 
image below it

Is =
⋮
I2 =
I1 =
I0 =



Step 1a: Construct a Gauss-like Pyramid

each image is smoothed by a 
factor of k more than the 
image below it

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

SIFT 
terminology

An octave is a set of Gauss-convolved 
images, I1, …, IS representing a doubling 
of the scale parameter σ between I1 and 
IS.

each 
octave 
contains 
s + 1 
images



Step 1a: Construct a Gauss-like Pyramid
Step 1a: Compute a pyramid of Gauss-filtered 

images organized into octaves of s + 1 
images

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

each 
octave 
contains 
s + 1 
images

images in next octave are 
subsampled and stored at 
1/2 resolution of previous 
octave

s = 3 (3 images/octave)
σ = 1.6 (for first octave)

In practice:



Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG 
pyramid

Step 1c

Locate 
extrema of 
DOG 
pyramid

Step 1a

Build 
pyramid of 
Gauss-
smoothed 
images

Step 1e

Prune set of 
extrema

Step 1d
Refine 
location of 
DOG 
extrema

Step 1f

Assign 
orientation 
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema



Step 1b: Compute Pyramid of DOG Images
Step 1b: Compute a pyramid of DOG-filtered 

images

D(x, y, ρ) = I(x, y) * (G(x, y, kρ) − G(xy, ρ))
for ρ = σ, kσ, k2σ, …, kS−1σ

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

each 
octave 
contains 
s + 1 
images

D(x, y, kSσ)

D(x, y, σ)



Step 1b: Compute Pyramid of DOG Images
Step 1b: Compute a pyramid of DOG-filtered 

images

D(x , y, ρ) = I(x , y) * (G (x , y, kρ) − G (x y, ρ))
for ρ = σ, kσ, k2σ, …, kS−1σ

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

each 
octave 
contains 
s + 1 
images

D(x, y, kSσ)

D(x, y, σ)



Reminder: Difference-of-Gaussian Filtering

original

I * Gρ



Reminder: Difference-of-Gaussian Filtering

I * Gkρ



Reminder: Difference-of-Gaussian Filtering

Difference of 
two Gaussian-
smoothed 
versions of I:

But we know 
that

I * Gkρ−
I * Gρ =
I * (Gkρ − Gρ)

(just the difference 
between two 
Gaussian masks)

Gkρ − Gρ =

kρ(kρ − ρ)∇2Gρ

D(x, y, ρ) = [∇2(I * Gρ)] ρ2k(k − 1)⟹

⟹



Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG 
pyramid

Step 1c

Locate 
extrema of 
DOG 
pyramid

Step 1a

Build 
pyramid of 
Gauss-
smoothed 
images

Step 1e

Prune set of 
extrema

Step 1d
Refine 
location of 
DOG 
extrema

Step 1f

Assign 
orientation 
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema



Step 1c: Detecting DOG Extrema
Step 1c (Extremum detection): Find all pixels 

that correspond to extrema of D(x, y, 𝜌)
Extrema of the image Laplacian are readily 
distinguishable from their surroundings. There are 
usually just a few thousand in each pyramid.

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)



The Difference-Of-Gaussians (DOG) Filter

Finding local 
extrema in a 
single image 
D(x, y, 𝜌)

• minimum at 
(x, y) if 
D(x,y,𝜌) < all 
neighbours

• maximum if 
D(x,y,𝜌) > all 
neighbours

>>
> >>

> >>

> >
>> >

>> >

(x, y)

(x, y)



Step 1c: Detecting DOG Extrema
Step 1c (Extremum detection): Find all pixels 

that correspond to extrema of D(x, y, 𝜌)

finding extrema in 
a “stack” of images

must also be 
< than all 
neighbours in 
adjacent 
scales

must also be 
> than all 
neighbours in 
adjacent 
scales

or

ρk

ρ

ρ /k



Step 1c: Detecting DOG Extrema
Step 1c (Extremum detection): Find all pixels 

that correspond to extrema of D(x, y, 𝜌)

finding extrema in 
a “stack” of images

must also be 
< than all 
neighbours in 
adjacent 
scales

must also be 
> than all 
neighbours in 
adjacent 
scales

or

ρk

ρ

ρ /k

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)



Step 1c: Detecting DOG Extrema: Algorithm

Step 1c (Extremum detection): Find all pixels 
that correspond to extrema of D(x, y, 𝜌)

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)

For each (x, y, 𝜌), check whether D(x, y, 𝜌) is greater than (or 
smaller than) all of its neighbours in current scale and adjacent 
scales above & below.



Step 1c: SIFT Keypoints = DOG Extrema
Step 1c (Extremum detection): Find all pixels 

that correspond to extrema of D(x, y, 𝜌)

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

D(x, y, kSσ)

D(x, y, σ)

An extremum detected at D(x, y, 𝜌) defines 
the keypoint (x, y, 𝜌).



Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG 
pyramid

Step 1c

Locate 
extrema of 
DOG 
pyramid

Step 1a

Build 
pyramid of 
Gauss-
smoothed 
images

Step 1e

Prune set of 
extrema

Step 1d
Refine 
location of 
DOG 
extrema

Step 1f

Assign 
orientation 
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema



• The original SIFT method/paper just uses 
the pixel location of the extrema as the 
location of the key point

• Revised method finds the subpixel location 
interpolated location of the extrema using 
2nd order Taylor expansion of D at (x, y, 𝜌)

• This improves the results when matching 
significantly

Step 1d: Refining Location of Extrema
Step 1d (Extremum localization) Refine the location of 
detected extrema through a quadratic least-squares fit.



Step 1d: Refining Location of Extrema
2nd order Taylor expansion of D at (x, y, 𝜌):

D(Δ ⃗x ) = D( ⃗x )+( ∂D
∂ ⃗x )

T

⋅ Δ ⃗x

+
1
2

(Δ ⃗x )T ⋅
∂2D
∂ ⃗x 2

⋅ (Δ ⃗x )

1.

2. Take derivatives with respect to Δ ⃗x

∂D
∂(Δ ⃗x )

= ( ∂D
∂ ⃗x )

T

+ ( ∂2D
∂ ⃗x 2 )(Δ ⃗x )

3. Extremum ⇔ derivative is zero ⇒ solve for 
∂D

∂Δ ⃗x
= 0

(Δ ⃗x ) = ( ∂2D
∂ ⃗x 2 )

−1

⋅ ( ∂D
∂ ⃗x )



Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG 
pyramid

Step 1c

Locate 
extrema of 
DOG 
pyramid

Step 1a

Build 
pyramid of 
Gauss-
smoothed 
images

Step 1e

Prune set of 
extrema

Step 1d
Refine 
location of 
DOG 
extrema

Step 1f

Assign 
orientation 
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema



Step 1e: Pruning “Insignificant” Extrema
Step 1e (Extremum pruning): Prune all extrema that are 
weak or that correspond to edges

Condition for detecting a 
“strong” extremum (x′ �i, y′�i, ρ′�i)

|D(x′ �i, y′�i, ρ′�i) | = large
in practice, > 0.03

assumes image I has pixel 
intensities in the range [0, 1]

D(x, y, kSσ)

D(x, y, σ)

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ



Step 1e: Pruning “Insignificant” Extrema

D(x, y, kSσ)

D(x, y, σ)

Step 1e (Extremum pruning): Prune all extrema that are 
weak or that correspond to edges

Is = I * GkSσ
⋮
I2 = I * Gk(kσ)

I1 = I * Gkσ

I0 = I * Gσ

corner-like extremum edge-like extremum

position is 
well-
constrained

position along 
edge is not 
constrained

∙ ∙

keep prune

D(x′�i, y′�i, ρ′�i)



Step 1e: Pruning “Insignificant” Extrema
Step 1e (Extremum pruning): Prune all extrema that are 
weak or that correspond to edges

corner-like extremum edge-like extremum

position is 
well-
constrained

position along 
edge is not 
constrained

∙ ∙

keep prune

D(x′�i, y′�i, ρ′�i)



Step 1e: Pruning “Insignificant” Extrema
Step 1e (Extremum pruning): Prune all extrema that are 
weak or that correspond to edges

corner-like extremum edge-like extremum

position is 
well-
constrained

position along 
edge is not 
constrained

∙ ∙

keep prune

D(x′�i, y′�i, ρ′�i)

H =
∂2D
∂x2

∂2D
∂x∂y

∂2D
∂x∂y

∂2D
∂y2

Compute hessian H of
D(x, y, ρ′�i) at (x, y) = (x′�i, y′�i)

Prune if  Tr2(H )
Det(H )

> ( r + 1
r )

2

where for SIFT r = 10



Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG 
pyramid

Step 1c

Locate 
extrema of 
DOG 
pyramid

Step 1a

Build 
pyramid of 
Gauss-
smoothed 
images

Step 1e

Prune set of 
extrema

Step 1d
Refine 
location of 
DOG 
extrema

Step 1f

Assign 
orientation 
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema



Step 1f: Keypoint Orientation Assignment
Assigning an orientation θi to keypoint (x′ �i, y′�i, ρ′�i) :

I * Gρ′�i A. Compute smoothed 
image

B. Compute gradient 
magnitude & 
orientation in 
neighbourhood of

C. Compute histogram 
of orientations

D. Assigned orientation 
θi = highest peak in 
histogram

(x′�i, y′�i) in I * Gρ′ �i

Gradient direction

x′�i

y′�i

Histogram

gradient 
orientation

w
ei

gh
t

10∘ 20∘ 30∘ ⋯ 360∘



Step 1f: Keypoint Orientation Assignment

Histogram

gradient 
orientation

w
ei

gh
t

10∘ 20∘ 30∘ ⋯ 360∘

I * Gρ′�i

Computing Histogram of Orientations

• Orientations divided into 
36 bins (one every 10 
degrees).

• Pixel (x, y) contributes to 
the bin corresponding to 
the gradient orientation 
θ at (x, y).

• Contribution to the bin is 
equal to

• Total bin weight = sum 
of contributions from all 
pixels

Gradient 
direction

∙

|∇I(x, y) | ⋅ G1.5ρ′�i(d)x′ �i x

y′�i

y
d

∙ θ

highest peak



Computing SIFT Keypoints: Basic Steps

Step 1b

Build DOG 
pyramid

Step 1c

Locate 
extrema of 
DOG 
pyramid

Step 1a

Build 
pyramid of 
Gauss-
smoothed 
images

Step 1e

Prune set of 
extrema

Step 1d
Refine 
location of 
DOG 
extrema

Step 1f

Assign 
orientation 
to extrema

(xi, yi, ρi) →
(x′�i, y′�i, ρ′�i)

(xi, yi, ρi)

pi = (x′�i, y′�i, ρ′�i, θi)

keypoints = {
all remaining
(x′ �i, y′�i, ρ′�i)}

⇒ ⇒ ⇒

⇐⇐⇐

Location refinementExtremum pruningOrientation assign

Source image I Gauss-pyramid DOG pyramid DOG extrema



Topic 11: 
 
Feature Detection &  
Image Matching

• Introduction to the image matching problem 
• Image matching using SIFT features  
• The SIFT feature detector
• The SIFT descriptor



The SIFT Keypoints
Keypoint: A location (x, y) in the source image, 

with an associated orientation & scale, 
that is “visually distinct” from its 
surroundings.

Input:
Image I

Output:
A set of k SIFT 
keypoints

pi = (xi, yi, ρi, θi)

“Source” image I Detected keypoints

location

scale orientation

pi

pj

length 
denotes 
scale



The SIFT Feature Vectors

Feature vector (of a keypoint pi): A vector of fixed 
length that represents the image patch centred at 
pi.

Detected keypoints
Input:

Image I

Output:
A set of k 
keypoints

A set of k 
feature vectors

pi = (xi, yi, ρi, θi)
location

scale orientation

fi = ……

describes the patch 
centred at pi



Building the SIFT Descriptor
Image patch 

centred at (xi, yi) SIFT Descriptor

1. Compute gradients in 
16 x 16 pixel patch of 
image  
centred at 

I * Gσi

(xi, yi)
Gaussian-smoothed image 
at scale of the keypoint

xi

yi
θi



Building the SIFT Descriptor
Image patch 

centred at (xi, yi) SIFT Descriptor

1. Compute gradients in 
16 x 16 pixel patch of 
image  
centred at 

I * Gσi

(xi, yi)

xi

yi
θi

2. Compute gradient orientation 
relative to keypoint orientation

θ(x, y) = tan−1
∂(I * Gσi

)
∂y /

∂(I * Gσi
)

∂x
− θi

θ(x, y)



Building the SIFT Descriptor
Image patch 

centred at (xi, yi) SIFT Descriptor

1. Compute gradients
2. Compute relative 

gradient orientations

xi

yi
θi

3. Compute orientation 
histogram of each 4x4 pixel 
block 
Histogram contains 8 bins, 
each covering 45º

θ(x, y)
length represents 
“content” of each bin



Image patch 
centred at (xi, yi)

The Orientation Histogram 
of a 4x4 pixel block

xi

yi
θiθ(x, y)

The 4x4 Orientation Histogram

y

x

0∘

45∘90∘135∘

180∘

225∘

270∘ 315∘

θ(x, y)
θ1

θ2

Weight of (x, y) :
w = G σi

2 (∥(x − xi, y − yi)∥)
⇒ pixels closer to keypoint centre 
have higher weight

Total contribution of (x, y) to
the orientation histograms:
C(x, y) = w ⋅ ∥∇I * Gσi

(x, y)∥

gradient magnitude of smoothed image



Building the SIFT Descriptor
Image patch 

centred at (xi, yi) SIFT Descriptor

Contribution spread across 2 closest 
orientations & 3 closest histograms

xi

yi
θiθ(x, y)

no abrupt changes in histogram if 
keypoint centre displaced by 3 - 4 
pixels

⇒ 

Total contribution of (x, y) to
the orientation histograms:
C(x, y) = w ⋅ ∥∇I * Gσi

(x, y)∥

θ1 θ2

θ1 θ2 θ1 θ2



Building the SIFT Descriptor
Image patch 

centred at (xi, yi) SIFT Descriptor

Contribution spread across 2 closest 
orientations & 3 closest histograms

xi

yi
θiθ(x, y)

no abrupt changes in histogram if 
keypoint centre displaced by 3 - 4 
pixels

⇒ 

θ1 θ2

θ1 θ2 θ1 θ2

Example: fraction allocated to

orientation 1:

orientation 2:

θ1

θ1 + θ2θ2

θ1 + θ2



Building the SIFT Descriptor
Image patch 

centred at (xi, yi) SIFT Descriptor

1. Compute gradients
2. Compute relative gradient 

orientations
3. Define an “accumulator” 

variable for each of the 8

xi

yi
θi

orientations in each of the 16 
histograms (128 total).
4. For each pixel, calculate the pixel’s 
contribution to each accumulator 
variable.

θ(x, y)
length represents 
“content” of each bin



Converting SIFT Descriptors to 128-dim Vectors
SIFT Descriptor

length represents 
“content” of each bin

Post processing:
1. Normalize fi :

fi →
fi

∥fi∥

gives invariance to linear lighting 
variations across images, ie. when 
matching image I and image aI + b 
(because fi will be the same in both 
images)

⇒ 

2. Clamp fi :
Clamp all elements of fi at 0.2
gives less weight to very large 
gradient magnitudes

⇒ 
fi = ***

128

3. Re-normalize



⇒

Matching 2 Images Using SIFT Features
Im

ag
e 

I
Im

ag
e 

I’

⇒

⇒ ⇒

f1 = ……
f2 = ……
f3 = ……

fk−1 = ……
fk = ……

⋮

f′ �1 =
……

f′ �2 = ……
f′ �3 = ……

f′ �k−1 =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match 
feature 
vectors in the 
two sets:
{f1, f2, …, fk}
and
{f’1, f’2, …, f’k}



⇒

Matching 2 Images Using SIFT Features
Im

ag
e 

I
Im

ag
e 

I’

⇒

⇒ ⇒

f1 = ……
f2 = ……
fi = ……

fk−1 = ……
fk = ……

⋮

f′ �1 = ……
f′ �j** = ……

f′ �3 = ……

f′ �j* =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match fi
a. Compute ∥fi − f′ �j∥

for all j
b. Compute

fraction

ϕ =
∥fi − f′ �j*∥
∥fi − f′ �j**∥

where f′�j* is the 
closest descriptor
 in I′ � and f′ �j** is
2nd-closest.

c. Match fi to f′�j* if 
ϕ < 0.8



Matching 2 Images Using SIFT Features
Im

ag
e 

I
Im

ag
e 

I’

f1 = ……
f2 = ……
fi = ……

fk−1 = ……
fk = ……

⋮

f′ �1 = ……
f′ �j** = ……

f′ �3 = ……

f′ �j* =
……

f′ �k = ……

⋮

1. Identify keypoints 2. Build feature vectors

3. Match fi
a. Compute ∥fi − f′ �j∥

for all j
b. Compute

fraction

ϕ =
∥fi − f′ �j*∥
∥fi − f′ �j**∥

where f′�j* is the 
closest descriptor
 in I′ � and f′ �j** is
2nd-closest.

c. Match fi to f′�j* if 
ϕ < 0.8

Intuition for 
matching 
algorithm:

match 
established 
only if it is 
deemed 
reliable, ie. if 
there is only 
one very 
similar feature 
in image I’


