
Topic 10: 
 
Gaussian & Laplacian
Pyramids

• The Gaussian pyramid
• Constructing the Gaussian pyramid

• The REDUCE() function
• Constructing the Laplacian pyramid

• The EXPAND() function
• Applications

The Gaussian Pyramid
Gaussian Pyramid Representation of the Photo

Original photo

The Gaussian Pyramid
Goal: Develop representation to decompose images into
information at multiple scales, to extract feature or structure
of interest, to attenuate noise.

Applications:
• Efficient image

coding
• Progressive

transmission
• Image blending
• Image enhancement
• Efficient Processing
• …too many to list

here!

Application: Pyramid Image Blending
Goal: Merge two images without visible seams

Horror Photo

© prof. dmartin

The Gaussian Pyramid
Goal: Develop representation to decompose images into
information at multiple scales, to extract feature or structure
of interest, to attenuate noise.

Input:

Output:

Image I of size
(2N + 1) × (2N + 1)

∙ N images g0, …, gN−1

∙ gl has size
(2N−l + 1) × (2N−l + 1)

2N + 1 2N−1 + 1

2N
+

1

2N−2 + 1g0

g1

g2

g3

Why is it Called a Pyramid?
Idea: Representation can be pictured as a “pyramid” of  

3x3, 5x5, 9x9,…, (2N+1)x(2N+1) images

...

g0 (= original image)

gN-2

gN-1

...

The Gaussian Pyramid

2N + 1 2N−1 + 1

2N
+

1

2N−2 + 1g0

g1

g2

g3

The representation is based on
2 basic operations:

1. Smoothing
Smooth the image
with a sequence of
smoothing filters,
each of which has
twice the radius of
the previous one.

2. Downsampling
Reduce image size
by half after each
smoothing.

[...] = [
.

matrix.]
......

Aside:
Downsampling is any linear
transformation of the form

downsampled
image

original
image

#rows <
#columns

Topic 10: 
 
Gaussian & Laplacian
Pyramids

• The Gaussian pyramid
• Constructing the Gaussian pyramid

• The REDUCE() function
• Constructing the Laplacian pyramid

• The EXPAND() function
• Applications

The Gaussian Pyramid

2N + 1 2N−1 + 1

2N
+

1

2N−2 + 1g0

g1

g2

g3

The representation is based on
2 basic operations:

1. Smoothing
Smooth the image
with a sequence of
smoothing filters,
each of which has
twice the radius of
the previous one.

2. Downsampling
Reduce image size
by half after each
smoothing.

[...] = [
.

matrix.]
......

Aside:
Downsampling is any linear
transformation of the form

downsampled
image

original
image

#rows <
#columns

Operation #1: Smooth Image at N-1 Scales

̂g1 = w * g0

Original photo g0

a 5×5
filter

g0

̂g1(i, j) =
2

∑
m=−2

2

∑
n=−2

w(m, n) ⋅ g0(i − m, j − n)

w slide over
image

Operation #1: Smooth Image at N-1 Scales

w slide over
imagêg2 = w * ̂g1

= w * (w * g0)
= (w * w) * g0

̂g1

can be thought of
as a filter

h = w * w
whose radius is
twice that of w.

In 1D:
w : w * w :

Operation #1: Smooth Image at N-1 Scales

w slide over
image

̂g3 = w * ̂g2

= (w * w * w) * g0

̂g2

radius is 4 times
that of w

In 1D:
w : w * w * w :

Operation #1: Smooth Image at N-1 Scales

w slide over
image

̂g4 = w * ̂g3

= (w * w * w * w) * g0

̂g3

Operation #1: Smooth Image at N-1 Scales

w slide over
image

̂g4

Operation #1: Smooth Image at N-1 Scales

w slide over
image

̂g5

Operation #1: Smooth Image at N-1 Scales

w slide over
image

̂g6

Operation #1: Smooth Image at N-1 Scales
̂g7

Smoothing Filter in 1D: Derivation from 4 Criteria

1. always has 5
elements (aka “5-tap”
filter)

2. symmetric about
o:

3. applying to a
constant image
does not change it

ŵ

ŵ

ŵ =

c
b
a
b
c

=

1/4 − a /2
1/4
a

1/4
1/4 − a /2

2

∑
m=−2

ŵ(m) = 1

⟺ a + 2b + 2c = 1

ŵ

̂gl

̂gl+1 ̂gl+1(i)

̂gl(i)

ŵ(−2)ŵ(−1)ŵ(0)ŵ(1)ŵ(2)

+ + + + +

* * * * *

2

∑
m=−2

ŵ(m) ⋅ ̂gl(i − m)

1/4 − a /2 1/4 − a /21/4 1/4a

ŵ 4. Equal contribution
a + 2c = 2b = 1/2

To satisfy Criteria 1-4 we have a 2 equations
& 3 unknowns
⇒ a remains a free parameter

ŵ(2) = ŵ(−2) =
1
4

−
a
2

, ŵ(−1) = ŵ(1) =
1
4

usually a ∈ [0.3,0.6]

Defining the Smoothing Filter in 2D

̂g1 = w * g0
g0

w slide over
image

Exploiting separability to
compute :
1. Convolve each row of

g0 with .
2. Convolve the columns

fo the result with
again.

w(m, n) = ŵ(m) ⋅ ŵ(n)

=

..
ŵ..

[(ŵ)T]

w is a separable
smooth filter defined
by ŵ

ŵ

ŵ

̂g15 x 1 vector5

5

Operation #2: Downsample the Smoothed Image
̂g1

g1

2N - 1 + 1

2N + 1

Since contains less
image detail, we
downsample it by 2 (ie.
store every other pixel)

̂g1

g1(i, j) = ̂g1(2i,2j)

Topic 10: 
 
Gaussian & Laplacian
Pyramids

• The Gaussian pyramid
• Constructing the Gaussian pyramid

• The REDUCE() function
• Constructing the Laplacian pyramid

• The EXPAND() function
• Applications

Operations #1 & #2: The REDUCE() Function
Smoothing & downsampling are combing into a single
REDUCE function.

gl

w * gl

gl+1 = REDUCE(gl)

gl+1(i, j) =
2

∑
m=−2

2

∑
n=−2

w(m, n) ⋅ gl(2i − m, 2j − n)

downsample × 2

gl+1

2N−l + 1

2N−l−1 + 1

The REDUCE() function

...

REDUCE(g0)

REDUCE(g1)

REDUCE(g2)

The REDUCE() function

...

REDUCE(g0)

REDUCE(g1)

REDUCE(g2)
Visualizing in 1D

REDUCE(g0)

REDUCE(REDUCE(g0))

g0

g1

g2

contributes
to • weight a
to • weight c
to • weight c
total: a + 2c

contributes
to • weight b
to • weight b

total: 2b

Equal contribution
criterion:
when a + 2c = 2b, all
pixels of level gl
contribute equally to
level gl+1

each pixel receives
contribution from 5 pixels
below

The REDUCE() function

...

REDUCE(g0)

REDUCE(g1)

REDUCE(g2)
Visualizing in 1D

REDUCE(g0)

REDUCE(REDUCE(g0))

g0

g1

g2

contributes
to • weight a
to • weight c
to • weight c
total: a + 2c

contributes
to • weight b
to • weight b

total: 2b

Equal contribution
criterion:
when a + 2c = 2b, all
pixels of level gl
contribute equally to
level gl+1

each pixel receives
contribution from 5 pixels
below

The REDUCE() function

...

REDUCE(g0)

REDUCE(g1)

REDUCE(g2)
Visualizing in 1D

REDUCE(g0)

REDUCE(REDUCE(g0))

g0

g1

g2

contributes
to • weight a
to • weight c
to • weight c
total: a + 2c

contributes
to • weight b
to • weight b

total: 2b

Equal contribution
criterion:
when a + 2c = 2b, all
pixels of level gl
contribute equally to
level gl+1

The REDUCE() function

...

REDUCE(g0)

REDUCE(g1)

REDUCE(g2)
Visualizing in 1D

REDUCE(g0)

REDUCE(REDUCE(g0))

g0

g1

g2

contributes
to • weight a
to • weight c
to • weight c
total: a + 2c

contributes
to • weight b
to • weight b

total: 2b

Equal contribution
criterion:
when a + 2c = 2b, all
pixels of level gl
contribute equally to
level gl+1

The 1D REDUCE() function in matrix notation

⋮
g1
⋮

=

1 0 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

c b a b c 0 ⋯ 0
0 c b a b c ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 0 0 0 ⋯ c

⋮
⋮
g0
⋮
⋮

g1 = D0 ⋅ C0 ⋅ g0

gl+1 = Dl ⋅ Cl ⋅ gl

downsampling
matrix D0

convolution
matrix C0

General expression:

The Gaussian Pyramid
Goal: Develop representation to decompose images into
information at multiple scales, to extract feature or structure
of interest, to attenuate noise.

Input:

Output:

Image I of size
(2N + 1) × (2N + 1)

∙ N images g0, …, gN−1

∙ gl has size
(2N−l + 1) × (2N−l + 1)

2N + 1 2N−1 + 1

2N
+

1

2N−2 + 1g0

g1

g2

g3

Operations #1 & #2: The REDUCE() Function
Smoothing & downsampling are combing into a single
REDUCE function.

gl

w * gl

gl+1 = REDUCE(gl)

gl+1(i, j) =
2

∑
m=−2

2

∑
n=−2

w(m, n) ⋅ gl(2i − m, 2j − n)

downsample × 2

gl+1

2N−l + 1

2N−l−1 + 1

What Does Smoothing Take Away?

original

g0 = I

original
photo

What Does Smoothing Take Away?

smoothed
photo

̂g1 = w * g0

What Does Smoothing Take Away?
g0 − ̂g1

Details in that were not
represented in .

g0
̂g1

Topic 10: 
 
Gaussian & Laplacian
Pyramids

• The Gaussian pyramid
• Constructing the Gaussian pyramid

• The REDUCE() function
• Constructing the Laplacian pyramid

• The EXPAND() function
• Applications

The Laplacian Pyramid

2N + 1 2N−1 + 1

2N
+

1

2N−2 + 1g0

g1

g2

g3

Idea:
Rather than store the smoothed images, store only
the difference between levels gl and gl+1

The Laplacian Pyramid

Idea:
Rather than store the smoothed images, store only
the difference between levels gl and gl+1

2N + 1 2N−1 + 1

2N
+

1

2N−2 + 1L0

L1

L2
L3

most values are 0
(gray) ⇒ can be
quantized and
represented with
few bits

The Laplacian Pyramid

2N + 1 2N−1 + 1

2N
+

1

2N−2 + 1g0

g1

g2

g3

Idea:
Rather than store the smoothed images, store only
the difference between levels gl and gl+1

• To do this, we must
compare adjacent
levels gl and gl+1

• But gl, gl+1 are not
the same size!
⇒ Expand gl+1 to
make it equal size to
gl

Operation #3: The EXPAND() Function

gl
EXPAND(gl)

EXPAND()
2N−l + 1

2N−l+1 + 1

EXPAND(gl) = 4
2

∑
m=−2

2

∑
n=−2

w(m, n) ⋅ gl (i − m
2

,
j − n

2)

The EXPAND() function
The function upsamples level gl by doubling its size from
(2N - l + 1) × (2N - l + 1) to (2N - l + 1 + 1) × (2N - l + 1 + 1)

Visualizing in 1D Generalizing expression 1D

EVEN pixels
receive contribution
from 3 pixels above
them  
(total weight =  
2c + a = 1/2)

ODD pixels receive
contribution from 2
pixels above them  
(total weight =  
2b = 1/2)

g1

EXPAND(g1)

EXPAND(gl)(i) =

2
2

∑
m=−2

ŵ(m) ⋅ gl (i − m
2)

evaluated only for
where is an
integer

i, m
i − m

2

The EXPAND() function
The function upsamples level gl by doubling its size from
(2N - l + 1) × (2N - l + 1) to (2N - l + 1 + 1) × (2N - l + 1 + 1)

Visualizing in 1D EXPAND function in
matrix notation (1D)

EVEN pixels
receive contribution
from 3 pixels above
them  
(total weight =  
2c + a = 1/2)

ODD pixels receive
contribution from 2
pixels above them  
(total weight =  
2b = 1/2)

g1

EXPAND(g1)

.
=

c b a b c ⋯ 0
0 c b a b ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 0 0 ⋯ c

1 0 0 ⋯ 0
0 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

[
.]

EX
PA

N
D

(g
1)

g1

2N + 1 2N−1 + 1

EXPAND(g1) = C0 ⋅ (D0)T ⋅ g1

convolution
matrix C0

upsampling
matrix (D0)T

2N
+

1

The Laplacian Pyramid

g1g0 L0

The Laplacian Pyramid

g1

g2

L1

L1 = g1 − EXPAND(g2)

The Laplacian Pyramid

g2

L2 = g2 − EXPAND(g3)

g3 L2

The Laplacian Pyramid

Often we use a truncated
Laplacian pyramid by storing
images L0, L1, ..., Lk, gk+1 for  
k + 1 < N

Base case: store gN

The Laplacian Image Pyramid
Idea: Represent gl image by a gl+1 image and a  

 detail image (called the Laplacian Ll image)  
 whose size is equal to the gl image

gl EXPAND(gl+1)

= +

gl-EXPAND(gl+1)

gl+1

= +

EXPAND() =

REDUCE() Laplacian Ll

The Laplacian Image Pyramid
Idea: This decomposition can be repeated several times!!

gl

gl+1

= +

Laplacian Ll

The Laplacian Image Pyramid
Idea: This decomposition can be repeated several times!!

gl

=

Laplacian Ll

+
gl+2

Laplacian Ll+1

Given an input image of size
(2N+1) × (2N+1), the Laplacian
pyramid representation consists of
• L0, …, Lk-1
• gk for some k ≤ N

Transmission using EXPAND
RECEIVER

TRANSMITTER

3. Display
d3 = d2+
EXPANDk−2(Lk−2)

2. Display
d2 = d1+
EXPANDk−1(Lk−1)

1. Display d1 =
EXPANDk(gk)

1. Transmit gk

2. Transmit Lk−13. Transmit Lk−24. Transmit Lk−35. Transmit Lk−4

Topic 10: 
 
Gaussian & Laplacian
Pyramids

• The Gaussian pyramid
• Constructing the Gaussian pyramid

• The REDUCE() function
• Constructing the Laplacian pyramid

• The EXPAND() function
• Applications

• Multi-resolution image blending
• Multi-resolution image editing

Original photo

Final photo

Adding 
makeup

Adding 
a glint

(Berman, Bartell, Salesin, SIGGRAPH’94)

Application #2: Multi-Resolution Image Editing
How can we achieve the painting operations below? 

Image Editing

Approach #1
• Modify the

image pixels
directly,
using a
brush tool

Image Editing

Approach #1
• Modify the

image pixels
directly,
using a
brush tool

Difficulty: Manipulating
pixel colors directly will
distort/flatten fine scale
detail

Image Editing

Approach #1
• Modify the

image pixels
directly,
using a
brush tool

Difficulty: Manipulating
pixel colors directly will
distort/flatten fine scale
detail

Approach #2
• Edit a lower-

resolution version
of the photo (e.g.
level gk of the
Gauss pyramid
for k > 0)

• How do we
create an edited
full-res photo?

Pyramid-Based Image Editing
1. Edit to obtain . 2. Add the details using g1 g̃1 L0

g̃0 g1 L0

Definition of L0 :
L0 = g0 − EXPAND(g1)

Pyramid-Based Image Editing
1. Edit to obtain . 2. Add the details using

Definition of L0 :
L0 = g0 − EXPAND(g1)

g1 g̃1 L0

g̃0 g1 L0

Final image:
g̃0 = EXPAND(g̃1) + L0

EXPAND(g̃1)

⨁

Original photo Adding 
makeup

Multi-Resolution Image Editing

The procedure allows us to apply
“paint” to an image while preserving
image detail.

Multi-Resolution Image Editing
(from Berman et al)

1. Original2.
100 000 x

zoom

3.
add “smog”

4.
zoomed-in
result

Note: Authors used a wavelet pyramid rather than a Gaussian pyramid, but the principle
is the same.

Topic 10: 
 
Hierarchical image
representations

• The Gaussian pyramid
• Constructing the Gaussian pyramid

• The REDUCE() function
• Constructing the Laplacian pyramid

• The EXPAND() function
• Applications

• Multi-resolution image blending
• Multi-resolution image editing

Image Blending
Source A Source B

Blend

Slides adapted
from A. Efros
(CMU)

Feathering

0
1

0
1

+

=
Assign an alpha value
to each pixel near the
seam to make it less
visible.

Effect of Window Size

0

1 left

right
0

1

Ghosting is most
apparent here

α α

Effect of Window Size

0

1

0

1
α α

seam most visible
here

Image Blending
Source A Source B

Blend

Slides adapted
from A. Efros
(CMU)

Main challenge:
• Minimize ghosting

without making
visible seams

Application #1: Pyramid Blending Algorithm
Input: Source images A, B & binary matte M
Output: Blended image S

A B

Pyramid Blending Algorithm
Input: Source images A, B & binary matte M
Output: Blended image S

A B

Pad to make size
(2N + 1) × (2N + 1)

Pyramid Blending Algorithm
Input: Source images A, B & binary matte M
Output: Blended image S

A M

Pyramid Blending Algorithm
Input: Source images A, B & binary matte M
Output: Blended image S

1. Compute A’s
Laplacian
pyramid:
AL0,…, ALN-1, AgN

2. Compute B’s
Laplacian
pyramid:
BL0,…, BLN-1, BgN

3. Compute M’s
Gaussian
pyramid:
Mg0,…, MgN

AL0

AL1

BL0

BL1

Mg0

Mg1

Pyramid Blending Algorithm

ALN-2

ALN-1 MgN-1

MgN-2 BLN-2

BLN-1

SLN-2

4. Compute the Laplacian pyramid, SL0, SL1,… SLN-1, SgN by
applying the matting equation with matte Mgl.

SLl(i, j) = Mgl(i, j)ALl(i, j) + (1 − Mgl(i, j))BLl(i, j)ALl(i, j) BLl(i, j)

* *

Pyramid Blending Algorithm
4. Compute the Laplacian pyramid, SL0, SL1,… SLN-1, SgN by

applying the matting equation with matte Mgl.
SLl(i, j) = Mgl(i, j)ALl(i, j) + (1 − Mgl(i, j))BLl(i, j)ALl(i, j) BLl(i, j)

AL0

AL1

BL0

BL1

Mg0

Mg1

SL0

SL1

Pyramid Blending Algorithm
The algorithm effectively uses a different alpha
matte for each level of detail.

Mg0 Mg1 Mg2 Mg3

Mg7Mg6Mg5Mg4

↑ detail ⇒ ↓ feathering window ↓ detail ⇒ ↑ feathering window

Pyramid Blending Algorithm
5. Compute level 0 of the Gaussian pyramid of S from SL0,

SL1,… SLN-1, SgN.

Result S

⇒

SL0

SL1

Pyramid Blending Algorithm

Blending Mis-Matched Photos (still looks OK)

Merging Mis-Matched Photos (no blend)

Blending without Using Pyramid

Pyramid Blending

laplacian
level

2

laplacian
level

0

left pyramid right pyramid blended pyramid

laplacian
level

4

Horror Photo

© prof. dmartin

