
Images in the
Frequency Domain

Topic 8
Week 8 – Mar. 6th, 2019

Topic 8: Images in the Frequency Domain

• Fourier Series/Transform
• Images in Frequency Domain
• The Convolution Theorem
• High-Pass, Low-Pass and Band-Pass Filters

2

A Different type of Basis

• Last week we learned how to represent images using a different basis
• This week we are going to learn how to represent images using a very

different and perhaps counter-intuitive basis – the Fourier basis
• This basis gives us a representation of our images in frequency space

Representing a Function with Sine Functions

• Let’s try to approximate the above function with only a sine wave
• We are going to use the basic “building block” of a general sine wave:

! sin(&' +))

+ ' = - −1 if ' < 0
1 otherwise

Quick Review: Sinusoid

! " = $ sin()" + +)

$ = 1.5

$ = 1.0

$ is the wave’s amplitude

Quick Review: Sinusoid

! " = $ sin()" + +)
) = 2.0

) = 1.0

) is the angular frequency

) = 212

where 2 is the frequency of
the wave

Quick Review: Sinusoid

! " = $ sin()" + +)
+ = -

2

+ = 0

+ is the phase

Representing a Function with Sine Functions

• First attempt – represent using single sine wave:

! " ≈ sin "

Representing a Function with Sine Functions

• First attempt – represent using single sine wave:

! " ≈ 4
% sin(")

Representing a Function with Sine Functions

• Second attempt – represent using two sine waves of different frequency:

! " ≈ 4
% sin " + 4

3% sin 3"

+ =

Fourier Series

• It turns out we can represent our step function exactly as the infinite sum of the sine waves:

! " = $
%&'

(&) 4
(2- − 1)1 sin 2- − 1 "

5=3 5=10

(Note: Don’t memorize this! We will learn how to calculate these coefficients….)

Fourier Series

• Discontinuities are difficult – they require more higher frequency terms to
represent
• The representation error for finite terms gives a “ringing” effect – name

will make more sense in 2D, but the cause of is more intuitive in 1D

!=3 !=10

Fourier Transform
• In general we can represent a function ! " by the sum of an infinite

series of sine waves
• The way we do this is called the Fourier transform, and is usually

defined with the complex exponential:

$ = &
'(

(
! ")'*+, -"

• ! " is	the	function	we	want	to	transform	to	the	frequency	domain
• F ω is	the	function	in	the	frequency	domain,	where $ = 2D!

Fourier Transform
• Fourier transform:

! " = $
%&

&

' ()%*+, -(

• ' (is	the	function	we	want	to	transform	to	the	frequency	domain
• F ω is	the	function	in	the	frequency	domain,	where " = 2D'

• Often	this	is	defined	instead	with	spatial	frequency	':

! ' = $
%&

&

' ()%*IJK, -(

Inverse Fourier Transform
• We can also go back to the original spatial signal with the inverse

transform!
• Inverse Fourier transform:

! " = 1
2&'()

)
* + ,-./ 0+

• * + is	the	function	we	want	to	transform	to	the	spatial	domain
• ! " is	the	function	in	the	spatial	domain

Fourier Transform
• Fourier transform:

! " = $
%&

&
' ()%*+, -(

• Wait, what happened to the sine?
• Still there, just hidden behind the complex exponential function:

)*+, = cos"(+ 2 sin"(
(complex)(real)

Fourier Transform
• Behind the complex exponential:

!"#$ = cos)* + , sin)*
(Euler's formula)

(Note: !/"#$ = cos−)* + , sin−)*)

• This cos/sin pair can encode the phase of the sinusoid
(i.e. direction of vector on unit circle):

2 cos)* + 3 sin)* = 4 sin()* + 6)
where,

4 = ± 2= + 3=, 6 = arctan 23
(image from Wikipedia)

Note: It is not important to understand the complex exponential function, it is just a more compact way of encoding the frequency/phase

Fourier Transform as a Change in Basis
• Fourier transform:

! " = $
%&

&
' () sin"(+ ' (cos"(0(

• The sine and cosine functions are an orthogonal basis
• The Fourier transform decomposes the function ' (into a weighted

sum of basis functions (i.e. sin/cos) in the complex space
• This is similar to the change of basis we saw before, where we

defined a vector based on two basis vectors, e.g. 1 = 234 + 256

Frequency Spectrum

• A sine curve is transformed to a single point in the Frequency domain
• This is because it is a single frequency (i.e. one term in the Fourier series)

Frequency Spectrum

• More complex functions are transformed into many points in the frequency domain
• They are composed of many frequencies (i.e. many terms in the Fourier series)

Fourier Series is Just Another Basis!

https://en.wikipedia.org/wiki/Fourier_series

https://en.wikipedia.org/wiki/Fourier_series

Topic 8: Images in the Frequency Domain

• Fourier Series/Transform
• Images in Frequency Domain
• The Convolution Theorem
• High-Pass, Low-Pass and Band-Pass Filters

24

Fourier Transform of Images

• The continuous 2D Fourier transform is defined:

! ", $ = &
'(

(

) *, + ,'-(/0123) 5* 5+

• The	discrete	2D	Fourier	transform	is	defined:
! ", $ =J

0

J
3

) *, + ,'-(/0123)

• Images are just a discrete 2D function, so we can also represent them
in the frequency domain

Simple Fourier Examples

!(#, %) ' (,)

Fourier is parameterized by (,): frequency components in the x and y directions)

Simple Fourier Examples

!(#, %) ' (,)

Fourier is parameterized by (,): frequency components in the x and y directions)

Simple Fourier Examples

!(#, %) ' (,)

Fourier is parameterized by (,): frequency components in the x and y directions)

Fourier Transform of Images

• As we said of the 1D Fourier transform, it can be thought of as a
change of basis, where the basis functions are sinusoids of different
frequencies
• Each of the images we just saw is a actually a Fourier basis function

Fourier Transform of Images

!(#, %) =(
)
(
*
+ ,, - ./0(1)23 *)

• With the 2D Fourier transform we can visualize
these basis functions as images!

• Above right, we show the 2D basis function,
below right, the coordinates of that function in
the 2D Frequency domain

(©Bill Freeman, MIT)

4

Fourier Transform of Images

• Vector form may be more intuitive:
!(#) = & ',) *+,#-

where # = ., / , - = (',))

• Direction of the basis function (sinusoid) is
direction of the vector #=(u, v)
• Frequency is determined by the magnitude

of the vector #=(u, v)

(©Bill Freeman, MIT)

#

Fourier Transform of Images

• Above we show the 2D basis function,
below the coordinates of that function in
the 2D Frequency domain

• Direction of the basis function (sinusoid) is
direction of the vector !=(u, v)
• Frequency is determined by the magnitude

of the vector !=(u, v)

(©Bill Freeman, MIT)

!

Fourier Transform of Images

• Above we show the 2D basis function,
below the coordinates of that function in
the 2D Frequency domain

• Direction of the basis function (sinusoid) is
direction of the vector !=(u, v)
• Frequency is determined by the magnitude

of the vector !=(u, v)

(©Bill Freeman, MIT)

!

Images and the Fourier Transform

• We have a set of basis 2D sinusoids (let’s say images)
• Images can be decomposed into a weighted linear combination of

sinusoids of different frequencies
• It is these weights that are the values in the Fourier “image” – and

they are complex numbers

= "# ⋅ +"& ⋅ +"' ⋅ …

Increasing frequency à

Fourier Transform as a Basis

Intermission

Fourier Transformed Image

!(#, %)
Fourier

Transform

' (,)

This is a complex valued function!
Can’t just display the values as image

Error

Fourier Transformed Image

!(#, %)
Fourier

Transform

' (,) |' (,) |

Doesn’t seem much better!

Fourier Transformed Image

!(#, %)
Fourier

Transform

' (,) |' (,) |

Bright spot at
'(0,0)

Fourier Transformed Image

!(#, %)
Fourier

Transform

' (,) log |' (,) |

DC Component

• F(0,0) is called the DC component
• What is this bright F(0,0) component?

!(0,0) ='
(
'
)
* +, , -.(/(0/))

• In the Fourier domain, it’s equal to the
sum of all image pixels
• In the spatial domain, it’s the image’s

mean brightness/intensity
• This is the information in the image that

does not change with spatial location log |! 5, 6 |

brightest at !(0,0)

Frequency/Phase in Fourier

!(#, %)
Fourier

Transform

angle(, -, .)

, -, .
|, -, . |

amplitude of sinusoid of frequency 0 = |(-, .)|

phase of sinusoid of frequency 0 = |(-, .)|

Frequency/Phase in Fourier
• The Fourier transform of an image gives us an “image” ! ", $ where each pixel is a complex number

representing the components in the Fourier basis

• If we express these complex numbers instead in polar
coordinates:
• magnitude/radius = amplitude component
• angle = phase component

• Remember we are decomposing our function into
sinusoids which have amplitude, frequency and phase,
i.e.

% & = (sin 2-.& + 0

• Note: Frequency and 2D orientation of the basis function
is given by the location in the Fourier domain image (see
previously shown basis function images/locations)

|! ", $ |

angle(! ", $)

amplitude of sinusoid of frequency 8 = |(", $)|

phase of sinusoid of frequency 8 = |(", $)|

! = 1.5

! = 1.0

phase

amplitude

' (= ! sin(-(+ /)

' (= ! sin(-(+ /) |2 3, 5 |

angle(2 3, 5)

amplitude of sinusoid of frequency - = |(3, 5)|

phase of sinusoid of frequency - = |(3, 5)|

Images and the Fourier Transform
• In image processing we will be focusing on the frequency
• However, without the phase component we can’t reconstruct a spatial image!

!(#, %) log |+ ,, - |

Fourier
Transform

Topic 8: Images in the Frequency Domain

• Fourier Series/Transform
• Images in Frequency Domain
• The Convolution Theorem

46

Images and the Fourier Transform
• Let’s look at what some of these frequency components look like in

the spatial domain

!(#, %)

Fourier
Transform

log |+ ,, - |

Images and the Fourier Transform
• Let’s zero out the low frequency Fourier components
• We are left with high frequency components – i.e. edges!

!(#, %)

Inverse
Fourier

Transform

log |+ ,, - |

Images and the Fourier Transform
• Let’s zero out the high frequency Fourier components
• We are left with low frequency components – the image looks blurred

!(#, %)

Inverse
Fourier

Transform

log |+ ,, - |

Images and the Fourier Transform
• Let’s zero out the high frequency Fourier components
• We are left with low frequency components – looks blurred

!(#, %)

Inverse
Fourier

Transform

Notice the “ringing” effect we saw in 1D!

Flashback to 1D

• The representation error for finite terms gives a “ringing” effect –
name will make more sense in 2D, but the cause of is more intuitive in
1D

!=3 !=10

Gaussians and Fourier Transform

• This ringing is because a box filter in
the spatial domain is mapped to a
sinc function in the frequency
domain (and vice versa):

sinc % = sin %
%

• However, Guassians in spatial
domain are also Gaussians in
frequency domain

x s

box(s)sinc(x)

Gaussian Filters in Frequency Domain
• Instead of using a box, let’s try a Gaussian instead

!(#, %)

Inverse
Fourier

Transform

log |+ ,, - |

Gaussian Filters in Frequency Domain
• This is a smoothed image!
• Same result as if we convolved

image with Gaussian filter
• But all we did here was multiply our

Fourier transformed image by a
Gaussian…
• How did we get the same result as

convolution (many multiplications
per pixel) with only one per pixel?

Gaussian Filters in Frequency Domain
• Taking it even further…

!(#, %)

Inverse
Fourier

Transform

log |+ ,, - |

Topic 8: Images in the Frequency Domain

• Fourier Series/Transform
• Images in Frequency Domain
• The Convolution Theorem
• High-Pass, Low-Pass and Band-Pass Filters

56

The Convolution Theorem

• Let ! ", $, ℎ(", $) be 2D spatial functions, (), * , +(), *) be their
corresponding Fourier transforms, ℱ-. be the inverse Fourier
transform, and ∗ is the convolution operator, then:

! " ∗ ℎ " = ℱ-.((), * +), *)

• Convolution in the spatial domain is the same as multiplication in
the frequency domain
• Why does this matter?
• Because image filtering operations in the spatial domain can be

implemented by a simple multiplication in the frequency domain!

Inverse Fourier Transform

Image Filtering in Frequency Domain

!(#, %)

ℎ(#, %)

(), *
Fo

ur
ie

r T
ra

ns
fo

rm

+), * filtered image:

(), * +), *

!′(#, %)

Multiply
In Fourier

When is Fourier Used for Image Filtering?

• So why don’t we always do image filtering in the frequency domain?
• Because the Fourier transform/inverse Fourier transform steps give us

significant overhead, it may not be more efficient than spatial convolution,
depending on the filter size
• Usually image filtering is only done in frequency domain for large image

filters

• It turns out there is a much more efficient implementation of the Discrete
Fourier Transform (DFT) called the Fast Fourier Transform (FFT)
• For a 1D signal with N data points, DFT is !(#$), FFT is !(# log#)

Topic 8: Images in the Frequency Domain

• Fourier Series/Transform
• Images in Frequency Domain
• The Convolution Theorem
• High-Pass, Low-Pass and Band-Pass Filters

60

Signal Processing Loan-Words

• There are a number of terms we use in visual computing that are
borrowed from signal processing, and the frequency domain
• These are important to understand, and you will hear them used

quite a bit
• You’ve already seen one: the DC component! This actually stands for

direct current, which doesn’t make much sense with images

Low-Pass Filters
• These are examples of “low pass” and “high pass” filters – a term common in signal processing
• Low-pass filter, we let low-frequencies “pass” through and “block” high frequencies

!(#, %)

Inverse
Fourier

Transform

|(), * |

High-Pass Filters
• These are examples of “low pass” and “high pass” filters – a term common in signal processing
• High-pass filter, we let high-frequencies “pass” through and “block” low frequencies

!(#, %)

Inverse
Fourier

Transform

|(), * |+), * ∗ (), *

Band-Pass Filters
• A band-pass filter only allows through a range of frequencies, i.e. a

frequency “band” – here effected by the difference of two gaussian filters

!(#, %)

Inverse
Fourier

Transform

|(), * |

End of Topic 8

