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Topic 8: Images in the Frequency Domain

* Fourier Series/Transform
* Images in Frequency Domain
 The Convolution Theorem

* High-Pass, Low-Pass and Band-Pass Filters



A Different type of Basis

 Last week we learned how to represent images using a different basis

* This week we are going to learn how to represent images using a very
different and perhaps counter-intuitive basis — the Fourier basis

* This basis gives us a representation of our images in frequency space



Representing a Function with Sine Functions

f(x)={_1 ifx <O

1 otherwise

* Let’s try to approximate the above function with only a sine wave
* We are going to use the basic “building block” of a general sine wave:

Asin(wx + ¢)



Quick Review: Sinusoid

y(x) = Asin(wx + ¢)

A is the wave’s amplitude




Quick Review: Sinusoid

y(x) = Asin(wx + ¢)

is the angular frequency

= 271f

where | is the frequency of
the wave



Quick Review: Sinusoid

y(x) = Asin(wx +

is the phase




Representing a Function with Sine Functions

* First attempt — represent using single sine wave:

f(x) = sin(x)



Representing a Function with Sine Functions

* First attempt — represent using single sine wave:

4
f(x) = —sin(x)



Representing a Function with Sine Functions

* Second attempt — represent using two sine waves of different frequency:

4 4
f(x) = - sin(x) + py sin(3x)



Fourler Series
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* It turns out we can represent our step function exactly as the infinite sum of the sine waves:

N=oc0
4
F(x) = ; Zn—1Dn sin((Zn — l)x)

(Note: Don’t memorize this! We will learn how to calculate these coefficients....)



Fourler Series
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* Discontinuities are difficult — they require more higher frequency terms to
represent

* The representation error for finite terms gives a “ringing” effect — name
will make more sense in 2D, but the cause of is more intuitive in 1D



Fourier Transform

* In general we can represent a function f(x) by the sum of an infinite
series of sine waves

* The way we do this is called the Fourier transform, and is usually
defined with the complex exponential:

\

Flw) = f f(x) e % dx

* f(x) is the function we want to transform to the frequency domain
* F(w) is the function in the frequency domain, where w = 2nf



Fourier Transform

* Fourier transform:

Flw) = foof(x) e ~lOX dx

* f(x) is the function we want to transform to the frequency domain
* F(w) is the function in the frequency domain, where w = 2mf

* Often this is defined instead with spatial frequency f:

F(f) = f F(x) e~ i2nrx gy



Inverse Fourier Transform

* We can also go back to the original spatial signal with the inverse
transform!

* Inverse Fourier transform:

00)

1 .
flx) = %f F(w) e'** dw

— 0O

* F(w)is the function we want to transform to the spatial domain
* f(x) is the function in the spatial domain



Fourier Transform

* Fourier transform:

Flw) = foof(x) e ~lOX dx

* Wait, what happened to the sine?
* Still there, just hidden behind the complex exponential function:

e!®X = cos wx +

(real) (complex)



Fourier Transform

* Behind the complex exponential:

el!®* = coswx + i sin wx

(Euler's formula)

(Note: e7'¥* = cos —wx + i sin —wx)

* This cos/sin pair can encode the of the sinusoid
(i.e. direction of vector on unit circle):

U cos wx + vsinwx = Asin(wx + ¢)
where,

u
A= i\/uz + v2, b = arctan;

Im

e’ =cosp+ising

sin @

COS @

(image from Wikipedia)

Note: It is not important to understand the complex exponential function, it is just a more compact way of encoding the frequency/phase



Fourier Transform as a Change in Basis

* Fourier transform:

Flw) = joof(x) i sinwx + f(x) cos wx dx

* The sine and cosine functions are an orthogonal basis

* The Fourier transform decomposes the function f(x) into a weighted
sum of basis functions (i.e. sin/cos) in the complex space

* This is similar to the change of basis we saw before, where we
defined a vector based on two basis vectors, e.g. v = vyi + v4j



Frequency Spectrum
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* Asine curve is transformed to a single point in the Frequency domain

* This is because it is a single frequency (i.e. one term in the Fourier series)



Frequency Spectrum
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* More complex functions are transformed into many points in the frequency domain

* They are composed of many frequencies (i.e. many terms in the Fourier series)



Fourier Series is Just Another Basis!
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https://en.wikipedia.org/wiki/Fourier series



https://en.wikipedia.org/wiki/Fourier_series

Topic 8: Images in the Frequency Domain

* Fourier Series/Transform
* Images in Frequency Domain
* The Convolution Theorem

* High-Pass, Low-Pass and Band-Pass Filters



Fourier Transform of Images

* The continuous 2D Fouriero’%ransform is defined:
F(u,v) = ff f(x,y) e tWX+vY) gy dy

 The discrete 2D Fourier transform is defined:

F(u,v) = z Zf(x’ y) e~ iux+vy)
X y

* Images are just a discrete 2D function, so we can also represent them
in the frequency domain



Simple Fourier Examples

f(x,y) F(u,v)

Fourier is parameterized by u, v: frequency components in the x and y directions)



Simple Fourier Examples

f(x,y) F(u,v)

Fourier is parameterized by u, v: frequency components in the x and y directions)



Simple Fourier Examples

f(x,y) F(u,v)

Fourier is parameterized by u, v: frequency components in the x and y directions)



Fourier Transform of Images

* As we said of the 1D Fourier transform, it can be thought of as a
change of basis, where the basis functions are sinusoids of different
frequencies

* Each of the images we just saw is a actually a Fourier basis function



Fourier Transform of Images

F(u,v) = z Zf(x, y) et x+vy)
Xy

 With the 2D Fourier transform we can visualize
these basis functions as images!

* Above right, we show the 2D basis function,
below right, the coordinates of that function in
the 2D Frequency domain

o— i (uztvy)
u

¢

eI (uz+vy)

(©Bill Freeman, MIT)



Fourier Transform of Images

* Vector form may be more intuitive:
Flw) = f(x,y) e™"**
where w = (u,v),x = (x,y)

* Direction of the basis function (sinusoid) is
direction of the vector w=(u, v) -

* Frequency is determined by the magnitude o—im(uz+vy)
of the vector w=(u, v) *

u

¢

i (uztvy)

(©Bill Freeman, MIT)



Fourier Transform of Images

* Above we show the 2D basis function,
below the coordinates of that function in
the 2D Frequency domain

* Direction of the basis function (sinusoid) is
direction of the vector w=(u, v)

* Frequency is determined by the magnitude
of the vector w=(u, v)
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(©Bill Freeman, MIT)
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* Frequency is determined by the magnitude

oim(uztuvy)

(OBl Freeman, MIT)



Images and the Fourier Transform




Fourier Transform as a Basis

exp[j 2m(ux+vy) ] = A 4 E S N

cos[2r(ux + vy)] +jsin[2x(ux +vy)]
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Intermission



Fourier Transformed Image

Error

This is a complex valued function!
Can’t just display the values as image

f(x,y) N F(uv)

Fourier
Transform



Fourier Transformed Image

Doesn’t seem much better!

Fourier
Transform



Fourier Transformed Image

/ Bright spot at
F(0,0)

Fourier
Transform



Fourier Transformed Image

fx,y) EERp F(w,v) log |, v)|

Fourier
Transform



DC Component

* F(0,0) is called the DC component
* What is this bright F(0,0) component?

F(0,0) = z z f(x,y) et(0x¥+0y) brightest at £(0,0)
Xy /

* In the Fourier domain, it’s equal to the
sum of all image pixels

* |[n the spatial domain, it’s the image’s
mean brightness/intensity

* This is the information in the image that
does not change with spatial location log |F (1, v)|




amplitude of sinusoid of frequency w = |(u, v)|

Frequency/Phase in Fourier

Fourier
Transform




amplitude of sinusoid of frequency w = |(u, v)|

Frequency/Phase in Fourier

* The Fourier transform of an image fives us an “image”
F (u, v) where each pixel is a complex number
representing the components in the Fourier basis

* If we express these complex numbers instead in polar
coordinates:

* magnitude/radius = amplitude component
* angle = phase component

* Remember we are decomposing our function into
sinusoids which have amplitude, frequency and phase,
i.e.

y(x) = Asin2nfx + ¢

* Note: Frequency and 2D orientation of the basis function|
is given by the location in the Fourier domain image (see |
previously shown basis function images/locations% '-




amplitude of sinusoid of frequency w = |(u, v)|

amplitude

y(x) = Asin(wx + ¢)

phase

y(x) = Asin(wx + ¢)



mages and the Fourier Transform

* In image processing we will be focusing on the frequency
* However, without the phase component we can’t reconstruct a spatial image!

)

Fourier
Transform

log |F (u, v)|



Topic 8: Images in the Frequency Domain

* Fourier Series/Transform
* Images in Frequency Domain
* The Convolution Theorem



Images and the Fourier Transform

* Let’s look at what some of these frequency components look like in
the spatial domain

—

Fourier
Transform

log |F (u, v)|



mages and the Fourier Transform

* Let’s zero out the low frequency Fourier components

* We are left with high frequency components —i.e. edges!

¢ | _
Inverse

Fourier |
Transform [

f(xy) log |F (u, v)]|




mages and the Fourier Transform

 Let’s zero out the high frequency Fourier components
* We are left with low frequency components — the image looks blurred

———

Inverse
Fourier
Transform

f(x,y) log |F (u, v)|



mages and the Fourier Transform

 Let’s zero out the high frequency Fourier components
* We are left with low frequency components — looks blurred

— Notice the “ringing” effect we saw in 1D!
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Flashback to 1D
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* The representation error for finite terms gives a “ringing” effect —
name will make more sense in 2D, but the cause of is more intuitive in

1D



Gaussians and Fourier Transform

* This ringing is because a box filter in  Spatial domain Frequency domain
the spatial domain is mapped to a
ﬁ ‘ sinc(s)

sbox(x)

sinc function in the frequency

domain (and vice versa): g
sin(x)

sinc(x) = | .
gauss(x; o) gauss(s; 1/o)

* However, Guassians in spatial S . X SN s
domain are also Gaussians in
frequency domain 4 box(s)

Y




Gaussian Filters in Frequency Domain

* Instead of using a box, let’s try a Gaussian instead

Inverse
Fourier
Transform

log |F (u, v)|



Gaussian Filters in Frequency Domain

* This is a smoothed image!

e Same result as if we convolved
image with Gaussian filter

e But all we did here was multiply our
Fourier transformed image by a
Gaussian...

* How did we get the same result as
convolution (many multiplications
per pixel) with only one per pixel?




Gaussian Filters in Frequency Domain

e Taking it even further...

—

Inverse
Fourier
Transform

f(x,y) log |F (u, v)|



Topic 8: Images in the Frequency Domain

* Fourier Series/Transform
* Images in Frequency Domain
* The Convolution Theorem

* High-Pass, Low-Pass and Band-Pass Filters



The Convolution Theorem

* Let f(x,y), h(x,y) be 2D spatial functions, F(u, v), H(u, v) be their
corresponding Fourier transforms, F ~ be the inverse Fourier
transform, and * is the convolution operator, then:

f(x) * h(x) = FH(F (u, v)H(u, v))

* Convolution in the spatial domain is the same as multiplication in
the frequency domain

* Why does this matter?

* Because image filtering operations in the spatial domain can be
implemented by a simple multiplication in the frequency domain!



Image Filtering in Frequency Domain

F(u,v) H(u,v)
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h(x,y) H(u,v) filtered image: f'(x,y)



When is Fourier Used for Image Filtering?

* So why don’t we always do image filtering in the frequency domain?

* Because the Fourier transform/inverse Fourier transform steps give us
significant overhead, it may not be more efficient than spatial convolution,
depending on the filter size

* Usually image filtering is only done in frequency domain for large image
filters

* |t turns out there is a much more efficient implementation of the Discrete
Fourier Transform (DFT) called the Fast Fourier Transform (FFT)

e For a 1D signal with N data points, DFTis O(N?), FFT is O(N log N)



Topic 8: Images in the Frequency Domain

* Fourier Series/Transform
* Images in Frequency Domain
* The Convolution Theorem

* High-Pass, Low-Pass and Band-Pass Filters



Signal Processing Loan-Words

* There are a number of terms we use in visual computing that are
borrowed from signal processing, and the frequency domain

* These are important to understand, and you will hear them used
quite a bit

* You've already seen one: the DC component! This actually stands for
direct current, which doesn’t make much sense with images



Low-Pass Filters

* These are examples of “low pass” and “high pass” filters —a term common in signal processing
* Low-pass filter, we let low-frequencies “pass” through and “block” high frequencies

Inverse
Fourier
Transform

|H(u, v)|



High-Pass Filters

* These are examples of “low pass” and “high pass” filters —a term common in signal processing
* High-pass filter, we let high-frequencies “pass” through and “block” low frequencies

— .
Inverse

Fourier
Transform

f(x,y) F(u,v) xH(u,v) |H(u,v)|



Band-Pass Filters

* A band-pass filter only allows through a range of frequencies, i.e. a
frequency “band” — here effected by the difference of two gaussian filters

—

Inverse
Fourier
Transform




End of Topic 8



