
Images as Vectors
Topic 6

Week 5 – Feb. 6th, 2019

1

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

2

Images as Arrays

• We are used to seeing images/image patches displayed in 2D
• However, they are stored in memory as 1D arrays:

Image 2D Array I ", $
(5×5)

") "* "+ ", "-
". "/ "0 "1 ")2
")) ")* ")+ "), ")-
"). ")/ ")0 ")1 "*2
"*) "** "*+ "*, "*-

Image 1D Array 3 "
(25)

⋯") "* "+ ", "- ". "/ "0 "*,"*+"**"*)

Images as Vectors

• Of course we can also consider the 1D array as a N-dimensional
vector, where N is the length of the array, or area of the image:

Image Patch I ", $
(&×()

Image Array * " (&)

"+ ", ⋯ ".
"./+

⋮ ⋱ ⋮

"2.

⋯"+ ⋯ ". "./+ "2.

I ", $ = *(" + (($ − 1))
⋯"(27+)./+

Image Patches as Vectors

• Say we are interested in image patches of
dimensions 1×3 from an image of size 1×9
• How many patches can we extract?
• Imagine sliding 1×3 window
• [50, 255, 30], [255, 30, 50], …, [176, 220, 160]
• Get 7 possible patches – due to “boundary”

• Each of these is a vector in a 3D space!

• In general, a patch of size %×& can be
thought of as a point in an %& dimensional
space, where each pixel is a different axis

A
xi

s
fo

r
pi

xe
l 3

Axis for pixel 2
Axis for pixel 1

Image I ',)
(9)

50 255 30 50 3 122 176 220 160

pixel 1

pixel 2

pixel 3

pixel 1

pixel 2

pixel 3

pixel 1

pixel 2

pixel 3

Takeaway: Images as Vectors

• We can consider any 2D image or image patch as it’s “flattened” array
• For any image/image patch with N rows and M columns, we can also

consider this array as a N*M-dimensional vector:

Image Array ! "
($%)

⋯"(⋯ ") ")*("+)

"(
",
⋮")

")*(
⋮

"+)

Image Vector .

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

7

Template Matching

• Given a “template” patch ! and we want to find
an image patch "# ∈ % that is most similar to our
template
• How do we calculate a “similarity” metric?

Image I &, (
(9)

50 255 30 50 3 122 176 220 160

"3

"4 "5

20 300 21

Template !

Similarity Metric #1: Distance

• Given a “template” patch ! and we want to find an
image patch "# ∈ % that is most similar to our
template
• As we have seen, we can consider our image patches

(and template) to be vectors
• Let’s try using the Euclidean distance between our

two vectors as our similarity metric :

&# − ! =)# − * +()# − *)

• In some contexts this is known as the root-mean-square
(RMS) error

20 300 21

Template !

Image I ", 3
(9)

50 255 30 50 3 122 176 220 160

&8

Template Matching using Distance

• Goal: Find image patch !" ∈ $ that is most
similar to given template %
• Image patch !" ∈ is calculated:

argmin,- ," − %

• The notation argmin/ 0 ! is shorthand for
“give the value of ! that minimizes 0 ! ”

20 300 21

Template %

Image I !, 6
(9)

50 255 30 50 3 122 176 220 160

,=

Template Matching using Distance

!" − $ = !" − $ &(!" − $)

• Relatively expensive sqrt computation, however:

argmin!/ !" − $ = argmin!/ !" − $ 0

• distance is minimized ósquared distance is
minimized

argmin!/ !" − $ &(!" − $)

20 300 21

Template $

Image I 5, 7
(9)

50 255 30 50 3 122 176 220 160

!<

• Let’s look at a 2D example

• Now our template and image patches are 3×3 patches or 9D vectors

2D Template Matching

Image 2D Array I $, &
9×3

i.e. 7 3×3 patches

50 255 30 80 30
80 200 100 50 60
150 90 30 80 90

100 50 200 250
30 30 60 30
100 250 100 240

row /

column 0 12

50 255 90

Template 3
3×3

80 200 100

150 90 30

column 0

row 0

3 =

50
255
90
80
200
100
150
90
30

12 =

80
30
100
50
60
30
80
90
100

50 255 90

Template %
3×3

80 200 100

150 90 30

column 0

row 0

2D Template Matching

• Consider the template (or any patch) to have it’s
origin (0,0) in the patch centre
• Instead of explicitly remapping our template/patches

into 1D vectors, we can use the write an expression
based on the 2D arrays
• For each patch at location (r, c) in image I, we

calculate the 2D sum:

dist(/, 1) = 4
5678

8
4
9678

8
: / + <, 1 + = − ? <, = @

where N is the “radius” of a patch, i.e. 1 for our 3×3 template with indices in
the range [-1,1]

Image 2D Array I B, C
9×3

i.e. 7 3×3 patches

50 255 30 80 30
80 200 100 50 60
150 90 30 80 90

100 50 200 250
30 30 60 30
100 250 100 240

row /

column 1 FG

Basic Template Matching Algorithm

dist(&, () = +
,-./

/
+
0-./

/
1 & + 3, (+ 4 − 6 3, 4 7

• Define an “output” image of size equal to the “input” image 1
• Compute dist(&, () for every pixel location &, (in image 1 where the

computation is possible
• i.e. not on the “border” pixels where the template does not “fit”

• Search the image for the location of the lowest distance value – this
location is the closest match

Distance as Similarity

• Let’s think about what our similarity
metric means…
• Which of the vectors is closest to the

red vector?
• Blue – and distance will tell us this

• But what about if the vectors are
image patches…

Scaled Image Example

Distance as Similarity

• If vectors are image patches, the
green vector is a scaled version of
the red vector (i.e. brighter image),
with some noise!
• Blue is different in some other ways,

that are probably more perceptible
to us as Humans!

Distance as Similarity

• We would tend to see images with
different scaling (brightness) as very
similar, at least compared to other
changes
• Our distance-based similarity metric

cannot distinguish between patches
that are just scaled versions of the
template T, and patches that differ in
other ways!

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

19

Similarity Metric #2: Cross-Correlation

• Goal: Find the image patch !" ∈ $ that is most
similar to given template %
• Let’s define a new similarity metric:

CC '"(, % = '"(⋅ %

i.e. the dot-product of the vectors '", %

• This is called the cross-correlation, or more
intuitively the “sliding dot-product”
• Why is this nicer than distance?

20 300 21

Template %

Image I !, 0
(9)

50 255 30 50 3 122 176 220 160

'7

Cross-Correlation as a Similarity Metric

• Recall the dot product is also defined:

! ⋅ # = ! # cos (

• Depends on the angle between the vectors
• If (is small, dot product is large
• Maximized when !, # are in the same direction (i.e. (= 0°)
• Zero when !, # are orthogonal, i.e. (= 90°

• Also depends on the length of the vectors !, # 90°

Similarity Metric #3: Normalized Cross-Correlation

CC "#$, & = "#$ ⋅ & = "#$ & cos ,
• It is somewhat intuitive that we want image patch

vectors with similar directions to be considered similar
• But this measure clearly biases towards vectors with

larger lengths – this doesn’t make much sense
• Instead, let’s normalize the result so it is independent of

the vector magnitudes…

NCC "#$, & = "#$ ⋅ &
"#$ & 90°

Normalized Cross-Correlation

NCC #$%, ' = #$% ⋅ '
#$% ' = cos -

• This is actually just the cosine of the angle between the
vectors! (or dot product of unit vectors .#$%, /')
• Properties:

• Independent of norm of image patches (length of vector)
• = 1.0 (max) when the intensities of #$%, ' are identical (to a

scale factor)
• = 0.0 (min) when #$%, ' are orthogonal (most dissimilar) 90°

56

/7

56

/7

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

24

50 255 90

Template %
3×3

80 200 100

150 90 30

column 0

row 0

2D Template Matching Using
Cross-Correlation
• For each patch at location (r, c) in image I, we

calculate the 2D sum:

CC(,, .) = 1
2345

5
1
6345

5
7 , + 9, . + : ; 9, :

where N is the “radius” of a patch as before.

Image 2D Array I =, >
9×3

i.e. 7 3×3 patches

50 255 30 80 30
80 200 100 50 60
150 90 30 80 90

100 50 200 250
30 30 60 30
100 250 100 240

row ,

column . AB

Template Matching: Computational Issues

• Assume a template with ! pixels, and an image
with " pixels
• For example, if our image is 1000×1000, " = 10'
• If our template is 32×32, ! = 32* = 1024

• For each patch, the CC metric requires
! multiplications, ! − 1 additions
• Total - "! operations for entire image!

Image 2D Array I /, 1
(" pixels)

34
Template 5
(! pixels)

34 =

/6

/7

5 =

86

⋮

87

Image Patch 3: /, 1
(! pixels)

CC 34<, 5 = 34< ⋅ 5

NCC 34<, 5 = 34< ⋅ 5
34< 5

dist* 34<, 5 = 34 − 5 <(34 − 5)
Similarity Metrics:

Template Matching: Computational Issues

• Total ! "# operations for entire image, where N and M are very large
• Clearly template matching is very expensive!
• What if we could represent patches $%&, (with only) ≪ # dimensions
• Would have !)#

Dimensionality Reduction

Image 2D Array I ,, -
(" pixels)

$%
Template (
(# pixels)

$% =

,0

,1

(=

20

⋮

21

Image Patch $4 ,, -
(# pixels)

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

28

Math Refresher: Basis Vectors

• Vectors are expressed relative to basis
• Typically this is the standard basis, i.e. for the

Euclidean 2D space, the basis vectors are:

!" = 0, 1 ≡ 0
1 , !(= 1,0 ≡ 1

0

• Any vector we have in this space is uniquely
represented as a linear combination of the basis
vectors, e.g.:

) = (3, 3) = 3!" + 3!(

.

/!" = 1
0

!(= 0
1

) = 3
3

Math Refresher: Change of Basis

• We can use a non-standard basis to represent
any vector
• For example, perhaps we want to represent this

vector with a new basis !:

"# = 1,1 , '# = (−1,1)

• Notice that in this new basis one of our basis
vectors is the unit vector +,
• Under our new basis, ,# = 3"# ≡ (3, 0)

0

1

" = 1
1 = +,

' = −1
1

, = 3
3

0

123 = 1
0

24 = 0
1

, = 3
3

Natural Images are not Random

Natural Images

• We would not expect to see the bottom
image out of our camera! (white noise)
• However, both of these are valid vectors

in the same !-dimensional image space!
• Natural images have structure
• Even if we considered all possible natural

images, they would occupy only a fraction
of the full N-dimensional space
• How can we take advantage of this?

Linear Dimensionality Reduction: Intuition

Case A: pixel intensities are unrelated
• What would we expect our space of image

patches to look like?
• For simplicity, assume our patches/templates

are 2-pixels long!
• Image patch vectors should look random,

uncorrelated, with no discernable relationship
between pixels

In
te

ns
ity

 o
f p

ixe
l 2

1
0

0
1

Intensity of pixel 1

#$

%$

Linear Dimensionality Reduction: Intuition

Case B: pixel intensities are related
• What would we expect our space of image

patches to look like?
• Image patch vectors have a trend, are

correlated, with relationships between pixels

In
te

ns
ity

 o
f p

ixe
l 2

1
0

0
1

Intensity of pixel 1

#$
%$

Linear Dimensionality Reduction: Intuition

In
te

ns
ity

 o
f p

ixe
l 2

1
0

0
1

Intensity of pixel 1

#$
%$

Case B: pixel intensities are relatedCase A: pixel intensities are unrelated
In

te
ns

ity
 o

f p
ixe

l 2

1
0

0
1

Intensity of pixel 1

#$

%$

Linear Dimensionality Reduction: Intuition
• What happens if we change basis?

!" =
$"%
$"&

= $"%'(+ $"&'*

In
te

ns
ity

 o
f p

ixe
l 2

1
0

0
1

Intensity of pixel 1

!"

$"%

$"%

In
te

ns
ity

 o
f p

ixe
l 2

Intensity of pixel 1

!"
-"%

-"& ≈
0/%/&

!" =
-"%
-"&

= -"%/% + -"&/& ≈ -"%/%
≈ 0

Linear Dimensionality Reduction: Intuition

• Idea: When pixel intensities are related, we
can express a patch in terms of basis vectors
where only a few of the coordinates are
significant (i.e. not close to 0)
• This is a nutshell is linear dimensionality

reduction: remove unneeded dimensionality

• This really depends on the basis we choose!

"#
$#%

$#& ≈
0(%(&

"# =
$#%
$#&

= $#%(% + $#&(& ≈ $#%(%

ax
is

2

axis 1

How Vector Components Change with Basis

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Intermission

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

40

Principle Components

• What we want to find are the principle
components of the data, i.e. the
directions in which the data shows the
most variation
• First we need to know how to change

basis!
!"!#

ax
is

2

axis 1

Changing Basis: Matrix Notation

In
te

ns
ity

 o
f p

ixe
l 2

1
0

0
1

Intensity of pixel 1

#$#$ = 1 0
0 1

&$'
&$(

)

basis matrix
(columns are basis vectors)

)

coordinate vectorSingle Patch:

#$ = *' *(
+''
+'(
+('
+((
⋯+-'
+-(

. 2-dim Patches:

#$ = *' *(
+$'
+$(

(standard basis)

(general basis)

standard basis

'(

ax
is

2

axis 1

#$

general basis

Changing Basis: Matrix Notation

!" !# ⋯ !% = '" '# ⋯'(
)""
)"#
)"(

)#"
)##
)#(

⋯
)%"
)%#
)%(

* M-dim Patches:

'"'#

axis 1

!+

general basis

!+ = '" '#
)""
)"#
)#"
)##
⋯)%"
)%#

* 2-dim Patches:

Changing Basis: Matrix Notation

• Want to choose !",… , !% such that &"' ≈ 0
for * < , ≤ ., i.e.:

/" /0 ⋯ /2 =

!" !0 ⋯!%

&""
⋮
&"5
&"56"
⋮
&"%

&0"
⋮
&05
&056"
⋮
&0%

⋯

&2"
⋮
&25
&256"
⋮
&2%

7

all ≈ 0

!"!0

ax
is

2

axis 1

Changing Basis: Matrix Notation

• Assume we find such a basis !",… , !%
• We can approximate the the patches using only

the first & components of the patch vectors
• We have a &-dimensional approximation!

'" '(⋯ '* = !" !(⋯!,

-""
⋮
-",
-",/"
⋮
-"%

-("
⋮
-(,
-(,/"
⋮
-(%

⋯

-*"
⋮
-*,
-*,/"
⋮
-*%

Principle Component Analysis (PCA)
Algorithm
Given ! image patches of " dimensions:
1) Calculate mean of image patch vectors

#$ = 1
!'$(

2) Subtract the mean from all patches (centre)
)(= $(− #$

3) Create an "×! matrix of all centred patch vectors (arranged as columns of
matrix)

, =)-).⋯)0
4) Find eigenvectors 1-,… ,14 corresponding to the d (where 6 ≪ ") largest

eigenvalues 8-, … , 84 of the covariance matrix
Σ = ,,:

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

47

Understanding PCA

• This is the algorithm (that you should know), and it’s immensely
useful – possibly one of the most useful things you can learn in this
course

• However, we haven’t explained why it works! Or for that matter what
eigenvectors/eigenvalues are…

• Here we will attempt to gain an understanding what PCA is doing, and
why it works

• You should take away at least the following: what is the covariance
matrix, and the SVD of the covariance gives us the
eigenvectors/values

Principle Component Analysis (PCA): Intuition

• This is all great! We understand we want to
find a basis of principle components
• But how do we find this basis?
• Let’s look at an example, here (again) are our

2-dimensional image patches

In
te

ns
ity

 o
f p

ixe
l 2

Intensity of pixel 1

!"

Principle Component Analysis (PCA): Intuition

• Let’s look at an example, here (again) are our
2-dimensional image patches

• We would like to find two orthogonal vectors:
• major direction of the largest data variance
• minor direction of least variance !"

#$%&'(#$")'(

Principle Component Analysis (PCA): Intuition

• Let’s put our computer vision hat back on for a
minute…
• Can we find a shape to contain this data that

would tell us the major and minor axis of
variation?

• Hint: not a line – line only gives us one
direction!

!"

#$%&'(#$")'(

Principle Component Analysis (PCA): Intuition

• Let’s put our computer vision hat back on for a
minute…
• Can we find a shape to contain this data that

would tell us the major and minor axis of
variation?

• Hint: not a line – line only gives us one
direction!
• Hint2: what shape has a major and minor axis?

!"

#$%&'(#$")'(

PCA as Ellipse Fitting
• This is similar to modelling our data’s variance using an ellipse!
• Equation of an ellipse:

! − #$ %

&% + (− #% %

)% = 1
• The centre of the ellipse is simply the mean of data:

,- = 1
./-0

• We can subtract this mean from our data, giving us an ellipse centred
on the origin:

!%
&% +

(%
)% = 1

-0,-

PCA as Ellipse Fitting
• What are the lengths of our major and minor axis?

!"
#$"

+ &
"

#'"
= 1

• “Spread” i.e. standard deviation of our data in the !, & axes:
#$, #'

• Recall, the sample variance of a dataset X (where +, is the mean):

#" , = 1
-.(,0 − +,)"

3043

#$#'

PCA as Ellipse Fitting
• What about a non-axis aligned eclipse?

!"
#" +

%"
&" = 1

• In our equation of the ellipse, a, b are the x and y
components of major/minor axis
• Variance is also only defined in terms of x and y

components!
)*" +, = 1

-.(+0, − 2+,)"

• In 2D, we must look at more general form of
variance: covariance

4054

),)6

40
789:;<

780=;<

Covariance
• We define covariance:

cov $, & = 1
)*($, − .$/)(&, − .$1)

• Notice, variance is a special case of covariance
23($) = cov $, $

• In 2D, we have 4 possible covariances,
represented in the covariance matrix

Σ($, &) = cov $, $ cov $, &
cov &, $ cov &, &

5,65

2728

5,
9:;<=>

9:,?=>

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Covariance Matrix
• This is the covariance matrix

Σ(#, %) = cov #, # cov #, %
cov %, # cov %, %

• Note: this matrix is symmetric since
cov #, % = cov %, #
• If our data is uncorrelated, the covariance

matrix will be of the form:

Σ(#, %) = +,- 0
0 +/- 01

234567

231867

correlated

0190

+:+;

uncorrelated

Covariance Matrix - Intuition

• The off-diagonal terms of the
covariance matrix give us an idea
of the relationship of the data
across dimensions
• Note that if the off-diagonal

terms are zero, there is no
obvious inter-dimension
relationship!

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Ellipsoid Equation
Ellipsoid (N-dim Ellipse) Equation:

! − # $A&'(! − #) = 1

where A&' is an inverse transformation matrix
(,×,), and !, # are N dimensional (col) vectors
• Here, the Ellipsoid is defined explicitly as a linearly

transformed (scaled/rotated) unit circle/sphere:

! − # $ (! − #) = ./ 012345

016745

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/

https://datascienceplus.com/understanding-the-covariance-matrix/

8 A&'

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/
https://datascienceplus.com/understanding-the-covariance-matrix/

Covariance as a Transformation Matrix
Ellipsoid (N-dim Ellipse) Equation:

! − # $Σ&'(! − #) = 1
where Σ&' is the inverse covariance matrix (,×,),
and !, # are N dimensional (col) vectors
• The covariance . is actually a linear transformation

telling us how our data differs from a dataset with
no correlations
• What we are actually interested in however are the

principle components/ellipse axes – how do we get
those from our covariance matrix? /01234

/05634

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/

https://datascienceplus.com/understanding-the-covariance-matrix/

Σ Σ&'

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/
https://datascienceplus.com/understanding-the-covariance-matrix/

Math Review: Eigenvectors/Eigenvalues

• Definition: ! ≠ # is an eigenvector of a matrix $ if
$! = &!

where & is a scalar, called the eigenvalue of !

Geometric Intuition:
• A general transformation may be defined' = $!
• ! is an eigenvector of $ if multiplication

(transformation) by $ preserves !’s direction
• Vectors in the direction of the axis of rotation are

unchanged in a transformation…

$!

(

)

!

$!

(

)

!

! is not an eigenvector

! is an eigenvector

Eigenvectors/values and Ellipse

• It turns out the eigenvectors/eigenvalues of our correlation matrix give us
the direction/size of our ellipse axes!
• Eigenvectors of ! give us the basis (directions) of the ellipse’s major/minor axis
• Eigenvalues give us the size of the ellipse’s major/minor axis

• Assume that we have eigenvectors "#, … , "& such that '# > ') > ⋯ > '&
• "#is the vector pointing in the direction of largest variance
• "&is the vector pointing in the direction of the least variance

'#"#

')")

Calculating Eigenvectors for Symmetric Matrix

• If Σ is a "×" symmetric matrix (like the covariance), then the singular
value decomposition (SVD) of $:

Σ = &Λ&(

where & is an "×" matrix of the eigenvectors as columns, and Λ is an
"×" diagonal matrix with the eigenvalues as the diagonal, i.e.

) = diag ./, … , .2 , & =
| |
4/ 45
| |

⋯
|
42
|

• There are many efficient implementations of SVD, so this is great!

Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces

64

PCA Application: EigenFaces

• EigenFaces uses PCA to recognize faces!
• Dataset: image patches of faces, dimensions
250×350 (75000-dimensional vectors)
• '(= ”Mean” Face image
•)*,… ,)- (where . < 20): the “eigenfaces”
• Each face patch in the dataset can be

represented as a linear combination of the
“eigenfaces”

EigenFaces: Database Creation Algorithm

Given ! face patches "#,… , "& of dimension '=75000:
1) Calculate mean of image patch vectors

(" = 1
!+",

2) Subtract the mean from all patches (centre)
-, = ", − ("

3) Create an '×! matrix of all centred patch vectors (arranged as columns of matrix)
0 = -# -1⋯ -&

4) Find eigenvectors 3#,… , 34 corresponding to the d (where 6 < 15) largest eigenvalues
9#, … , 94 of the correlation matrix 00:

5) Store the eigenvectors 3#,… , 34, mean image (" and vectors in new d-dimensional basis ;, =
<,# <,1 ⋯ <,4

EigenFaces

“Mean” Face

(not so mean!)

Top-6 Eigenvectors

EigenFaces: Representing a Face
• We can represent any face as

a linear combination of the
basis vectors.

• Not very flattering, but
consider this image is
represented as only 3
numbers in the database!

• Storage for N faces:
Images: 75000$
EigenFaces: 4 ⋅ 75000 + 3$

EigenFaces: Recognition

Given a query image ! and our EigenFaces database
1. Compute coordinates of ! in the EigenFaces basis, i.e. jth coord:

"#$ = &$'(
2. Find the vector)# in the database that is closest to *#
3. Return face image +# , i.e. the vector in the original image space

End of Topic 6

