Images as Vectors

Topic 6 Week 5 – Feb. 6th, 2019

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

Images as Arrays

- We are used to seeing images/image patches displayed in 2D
- However, they are stored in memory as 1D arrays:

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> 9	<i>x</i> ₁₀
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈		<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	
	Image 1D Array $X(x)$												
(25)													

Image 2D Array I(x, y) (5×5)

Images as Vectors

• Of course we can also consider the 1D array as a N-dimensional vector, where N is the length of the array, or area of the image:

Image Patches as Vectors

- Say we are interested in image patches of dimensions 1×3 from an image of size 1×9
- How many patches can we extract?
 - Imagine sliding 1×3 window
 - [50, 255, 30], [255, 30, 50], ..., [176, 220, 160]
 - Get 7 possible patches due to "boundary"
- Each of these is a vector in a 3D space!
- In general, a patch of size N×M can be thought of as a point in an NM dimensional space, where each pixel is a different axis

Takeaway: Images as Vectors

- We can consider any 2D image or image patch as it's "flattened" array
- For any image/image patch with N rows and M columns, we can also consider this array as a N*M-dimensional vector:

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

Template Matching

- Given a "template" patch T and we want to find an image patch $X_i \in I$ that is **most similar** to our template
- How do we calculate a "similarity" metric?

Similarity Metric #1: Distance

Template T

50 255 30 50 3 122 176 220 160 X_0 Image I(x, y) (9)

- Given a "template" patch T and we want to find an image patch $x_i \in I$ that is **most similar** to our template
- As we have seen, we can consider our image patches (and template) to be vectors
- Let's try using the Euclidean distance between our two vectors as our similarity metric :

$$\|\boldsymbol{X}_i - \boldsymbol{T}\| = \sqrt{(X_i - T)^T (X_i - T)}$$

 In some contexts this is known as the root-mean-square (RMS) error

Template Matching using Distance

Template **T**

50 255 30 50 3 122 176 220 160

$$X_0$$
 Image I(x, y)
(9)

- Goal: Find image patch $x_i \in I$ that is **most** similar to given template T
- Image patch $x_i \in$ is calculated:

 $\operatorname{argmin}_{X_i} \|X_i - T\|$

• The notation $\operatorname{argmin}_{x} f(x)$ is shorthand for "give the value of x that minimizes f(x)"

Template Matching using Distance

$$\|\boldsymbol{X}_i - \boldsymbol{T}\| = \sqrt{(\boldsymbol{X}_i - \boldsymbol{T})^T (\boldsymbol{X}_i - \boldsymbol{T})}$$

• Relatively expensive sqrt computation, however:

$$\operatorname{argmin}_{X_i} \|X_i - T\| = \operatorname{argmin}_{X_i} \|X_i - T\|^2$$

distance is minimized ⇔squared distance is minimized

$$\operatorname{argmin}_{X_i}(X_i - T)^T (X_i - T)$$

Template **T**

3

Image I(x, y)

50

30

255

 X_0

50

122 176 220 160

2D Template Matching

• Let's look at a 2D example

Now our template and image patches are 3×3 patches or 9D vectors

2D Template Matching

- Consider the template (or any patch) to have it's origin (0,0) in the patch centre
- Instead of explicitly remapping our template/patches into 1D vectors, we can use the write an expression based on the 2D arrays
- For each patch at location (r, c) in image I, we calculate the 2D sum:

dist(r,c) =
$$\sqrt{\sum_{a=-N}^{N} \sum_{b=-N}^{N} (I(r+a,c+b) - T(a,b))^2}$$

where N is the "radius" of a patch, i.e. 1 for our 3×3 template with indices in the range [-1,1]

Basic Template Matching Algorithm

dist(r,c) =
$$\sqrt{\sum_{a=-N}^{N} \sum_{b=-N}^{N} (I(r+a,c+b) - T(a,b))^2}$$

- Define an "output" image of size equal to the "input" image I
- Compute dist(*r*, *c*) for every pixel location *r*, *c* in image *I* where the computation is possible
 - i.e. not on the "border" pixels where the template does not "fit"
- Search the image for the location of the lowest distance value this location is the closest match

Distance as Similarity

- Let's think about what our similarity metric means...
- Which of the vectors is closest to the red vector?
- Blue and distance will tell us this

• **But** what about if the vectors are image patches...

Scaled Image Example

Distance as Similarity

- If vectors are image patches, the green vector is a scaled version of the red vector (i.e. brighter image), with some noise!
- Blue is different in some other ways, that are probably more perceptible to us as Humans!

Distance as Similarity

- We would tend to see images with different scaling (brightness) as very similar, at least compared to other changes
- Our distance-based similarity metric cannot distinguish between patches that are just scaled versions of the template *T*, and patches that differ in other ways!

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

Similarity Metric #2: Cross-Correlation

- Goal: Find the image patch $x_i \in I$ that is **most** similar to given template T
- Let's define a new similarity metric:

$$CC(\boldsymbol{X}_{i}^{T}, \boldsymbol{T}) = \boldsymbol{X}_{i}^{T} \cdot \boldsymbol{T}$$

i.e. the dot-product of the vectors X_i , T

- This is called the **cross-correlation**, or more intuitively the "sliding dot-product"
- Why is this nicer than distance?

Template **T**

Cross-Correlation as a Similarity Metric

• Recall the dot product is also defined:

 $\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$

- Depends on the angle between the vectors
 - If θ is small, dot product is large
 - Maximized when $\boldsymbol{a}, \boldsymbol{b}$ are in the same direction (i.e. $\theta = 0^{\circ}$)
 - Zero when $\boldsymbol{a}, \boldsymbol{b}$ are orthogonal, i.e. $\theta = 90^{\circ}$
- Also depends on the length of the vectors *a*, *b*

Similarity Metric #3: Normalized Cross-Correlation

 $CC(\boldsymbol{X}_{i}^{T}, \boldsymbol{T}) = \boldsymbol{X}_{i}^{T} \cdot \boldsymbol{T} = \|\boldsymbol{X}_{i}^{T}\| \|\boldsymbol{T}\| \cos \theta$

- It is somewhat intuitive that we want image patch vectors with similar directions to be considered similar
- But this measure clearly biases towards vectors with larger lengths – this doesn't make much sense
- Instead, let's normalize the result so it is independent of the vector magnitudes...

$$\operatorname{NCC}(\boldsymbol{X}_{i}^{T}, \boldsymbol{T}) = \frac{\boldsymbol{X}_{i}^{T} \cdot \boldsymbol{T}}{\|\boldsymbol{X}_{i}^{T}\| \|\boldsymbol{T}\|}$$

90°

Normalized Cross-Correlation

$$\operatorname{NCC}(\boldsymbol{X}_{i}^{T}, \boldsymbol{T}) = \frac{\boldsymbol{X}_{i}^{T} \cdot \boldsymbol{T}}{\|\boldsymbol{X}_{i}^{T}\| \|\boldsymbol{T}\|} = \cos \theta$$

- This is actually just the cosine of the angle between the vectors! (or dot product of unit vectors $\widehat{X_i^T}$, \widehat{T})
- Properties:
 - Independent of norm of image patches (length of vector)
 - = 1.0 (max) when the intensities of X_i^T , T are identical (to a scale factor)
 - = 0.0 (min) when X_i^T , T are orthogonal (most dissimilar)

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

2D Template Matching Using Cross-Correlation

• For each patch at location (r, c) in image I, we calculate the 2D sum:

$$CC(r,c) = \sum_{a=-N}^{N} \sum_{b=-N}^{N} I(r+a,c+b) T(a,b)$$

where N is the "radius" of a patch as before.

Template Matching: Computational Issues

- Assume a template with *M* pixels, and an image with *N* pixels
 - For example, if our image is 1000×1000 , $N = 10^6$
 - If our template is 32×32 , $M = 32^2 = 1024$
- For each patch, the CC metric requires M multiplications, M 1 additions
- Total O(NM) operations for entire image!

Similarity Metrics: $dist^{2}(X_{i}^{T}, T) = (X_{i} - T)^{T}(X_{i} - T)$ $CC(X_{i}^{T}, T) = X_{i}^{T} \cdot T$ $NCC(X_{i}^{T}, T) = \frac{X_{i}^{T} \cdot T}{\|X_{i}^{T}\| \|T\|}$

Template Matching: Computational Issues

- Total O(NM) operations for entire image, where N and M are very large
- Clearly template matching is very expensive!
- What if we could represent patches X_i^T , T with only $d \ll M$ dimensions
- Would have O(dM)

Dimensionality Reduction

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

Math Refresher: Basis Vectors

- Vectors are expressed relative to **basis**
- Typically this is the standard basis, i.e. for the Euclidean 2D space, the **basis vectors** are:

$$\boldsymbol{e}_{x} = (0, 1) \equiv \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \boldsymbol{e}_{y} = (1, 0) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 Any vector we have in this space is uniquely represented as a linear combination of the basis vectors, e.g.:

$$\boldsymbol{v} = (3,3) = 3\boldsymbol{e}_x + 3\boldsymbol{e}_y$$

Math Refresher: Change of Basis

- We can use a non-standard basis to represent any vector
- For example, perhaps we want to represent this vector with a new basis *B*:

$$i_B = (1,1), j_B = (-1,1)$$

- Notice that in this new basis one of our basis vectors is the unit vector $\widehat{\boldsymbol{v}}$
- Under our new basis, $v_B = 3i_B \equiv (3,0)$

Natural Images are not Random

Natural Images

- We would not expect to see the bottom image out of our camera! (white noise)
- However, both of these are valid vectors in the same *N*-dimensional image space!
- Natural images have structure
- Even if we considered all possible natural images, they would occupy only a fraction of the full N-dimensional space
- How can we take advantage of this?

Case A: pixel intensities are unrelated

- What would we expect our **space** of image patches to look like?
- For simplicity, assume our patches/templates are 2-pixels long!
- Image patch vectors should look random, uncorrelated, with no discernable relationship between pixels

Case B: pixel intensities are related

- What would we expect our space of image patches to look like?
- Image patch vectors have a trend, are correlated, with relationships between pixels

Case A: pixel intensities are unrelated

Case B: pixel intensities are related

• What happens if we change basis?

- Idea: When pixel intensities are related, we can express a patch in terms of basis vectors where only a few of the coordinates are significant (i.e. not close to 0)
- This is a nutshell is linear dimensionality reduction: **remove unneeded dimensionality**

• This really depends on the **basis** we choose!

$$\boldsymbol{X}_{i} = \begin{bmatrix} Y_{i}^{1} \\ Y_{i}^{2} \end{bmatrix} = Y_{i}^{1}\boldsymbol{B}_{1} + Y_{i}^{2}\boldsymbol{B}_{2} \approx Y_{i}^{1}\boldsymbol{B}_{1}$$

ntensity of pixel

How Vector Components Change with Basis

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Intermission

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

Principle Components

- What we want to find are the **principle components** of the data, i.e. the directions in which the data shows the most variation
- First we need to know how to change basis!

Intensity of pixel 1

N M-dim Patches:

$$\begin{bmatrix} X_1 & X_2 \cdots & X_N \end{bmatrix} = \begin{bmatrix} B_1 & B_2 \cdots & B_M \end{bmatrix} \begin{bmatrix} Y_1^1 & Y_2^1 & Y_N^1 \\ Y_1^2 & Y_2^2 & \cdots & Y_N^2 \\ Y_1^M & Y_2^M & Y_N^M \end{bmatrix}$$

Changing Basis: Matrix Notation

Changing Basis: Matrix Notation

$$\begin{bmatrix} X_1 & X_2 \cdots & X_N \end{bmatrix} = \begin{bmatrix} B_1 & B_2 \cdots & B_d \end{bmatrix} \begin{bmatrix} Y_1^1 & Y_2^1 & Y_N^1 \\ \vdots & \vdots & \vdots \\ Y_1^d & Y_2^d & Y_N^d \\ \frac{Y_1^{d+1}Y_2^{d+1} \cdots & Y_N^{d+1}}{1 & 2 & \cdots & N} \\ \vdots & \vdots & \vdots \\ \frac{Y_1^M & Y_2^M & Y_N^M}{1 & 2 & \cdots & Y_N^M} \end{bmatrix}$$

- Assume we find such a basis $\boldsymbol{B}_1, \dots, \boldsymbol{B}_M$
- We can approximate the the patches using only the first *d* components of the patch vectors
- We have a *d*-dimensional approximation!

Principle Component Analysis (PCA) Algorithm

Given N image patches of M dimensions:

1) Calculate mean of image patch vectors

$$\overline{X} = \frac{1}{N} \sum X_i$$

- 2) Subtract the mean from all patches (centre) $Z_i = X_i - \overline{X}$
- 3) Create an $M \times N$ matrix of all centred patch vectors (arranged as columns of matrix)

$$Z = \begin{bmatrix} \boldsymbol{Z}_1 & \boldsymbol{Z}_2 \cdots & \boldsymbol{Z}_N \end{bmatrix}$$

4) Find *eigenvectors* $B_1, ..., B_d$ corresponding to the d (where $d \ll M$) largest *eigenvalues* $\lambda_1, ..., \lambda_d$ of the **covariance matrix** $\Sigma = ZZ^T$

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

Understanding PCA

- This is the algorithm (that you should know), and it's immensely useful – possibly one of the most useful things you can learn in this course
- However, we haven't explained why it works! Or for that matter what eigenvectors/eigenvalues are...
- Here we will attempt to gain an understanding what PCA is doing, and why it works
- You should take away at least the following: what is the covariance matrix, and the SVD of the covariance gives us the eigenvectors/values

- This is all great! We understand we want to find a basis of principle components
- But how do we find this basis?
- Let's look at an example, here (again) are our 2-dimensional image patches

- Let's look at an example, here (again) are our 2-dimensional image patches
- We would like to find two orthogonal vectors:
 - major direction of the largest data variance
 - minor direction of least variance

- Let's put our computer vision hat back on for a minute...
- Can we find a shape to contain this data that would tell us the major and minor axis of variation?

 Hint: not a line – line only gives us one direction!

- Let's put our computer vision hat back on for a minute...
- Can we find a shape to contain this data that would tell us the major and minor axis of variation?
- Hint: not a line line only gives us one direction!
- Hint2: what shape has a major and minor axis?

PCA as Ellipse Fitting

- This is similar to modelling our data's variance using an ellipse!
- Equation of an ellipse:

$$\frac{(x-c_1)^2}{a^2} + \frac{(y-c_2)^2}{b^2} = 1$$

• The centre of the ellipse is simply the mean of data:

$$\overline{X} = \frac{1}{N} \sum X_i$$

• We can subtract this mean from our data, giving us an ellipse centred on the origin:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

PCA as Ellipse Fitting

• What are the lengths of our major and minor axis?

$$\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} = 1$$

• "Spread" i.e. standard deviation of our data in the x, y axes:

 σ_{χ} , σ_y

• Recall, the sample variance of a dataset X (where \overline{X} is the mean):

$$\sigma^2(X) = \frac{1}{N} \sum (X_i - \bar{X})^2$$

PCA as Ellipse Fitting

• What about a non-axis aligned eclipse?

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- In our equation of the ellipse, a, b are the x and y components of major/minor axis
- Variance is also only defined in terms of x and y components!

$$\sigma_X^2(X^x) = \frac{1}{N} \sum (X_i^x - \bar{X}^x)^2$$

• In 2D, we must look at more general form of variance: **covariance**

Covariance

• We define covariance: $1 \sum_{i=1}^{N} C_{i}$

$$\operatorname{cov}(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X}^X)(Y_i - \overline{X}^Y)$$

- Notice, variance is a special case of covariance $\sigma^2(X) = \operatorname{cov}(X, X)$
- In 2D, we have 4 possible covariances, represented in the **covariance matrix**

$$\Sigma(X,Y) = \begin{bmatrix} \operatorname{cov}(X,X) & \operatorname{cov}(X,Y) \\ \operatorname{cov}(Y,X) & \operatorname{cov}(Y,Y) \end{bmatrix}$$

Covariance Matrix

• This is the **covariance matrix**

$$\Sigma(X,Y) = \begin{bmatrix} \operatorname{cov}(X,X) & \operatorname{cov}(X,Y) \\ \operatorname{cov}(Y,X) & \operatorname{cov}(Y,Y) \end{bmatrix}$$

- Note: this matrix is symmetric since cov(X, Y) = cov(Y, X)
- If our data is **uncorrelated**, the covariance matrix will be of the form:

$$\Sigma(X,Y) = \begin{bmatrix} \sigma_X^2 & 0\\ 0 & \sigma_Y^2 \end{bmatrix}$$

Covariance Matrix - Intuition

- The off-diagonal terms of the covariance matrix give us an idea of the relationship of the data across dimensions
- Note that if the off-diagonal terms are zero, there is no obvious inter-dimension relationship!

Ellipsoid Equation

Ellipsoid (N-dim Ellipse) Equation:

$$(\boldsymbol{X} - \boldsymbol{\mu})^T \mathbf{A}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = 1$$

where A^{-1} is an inverse transformation matrix $(N \times N)$, and X, μ are N dimensional (col) vectors

• Here, the Ellipsoid is defined explicitly as a linearly transformed (scaled/rotated) unit circle/sphere:

$$(\boldsymbol{X} - \boldsymbol{\mu})^T \ (\boldsymbol{X} - \boldsymbol{\mu}) = r^2$$

Covariance as a Transformation Matrix

Ellipsoid (N-dim Ellipse) Equation:

$$(\boldsymbol{X} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = 1$$

where Σ^{-1} is the inverse covariance matrix ($N \times N$), and X, μ are N dimensional (col) vectors

- The covariance Σ is actually a linear transformation telling us how our data differs from a dataset with no correlations
- What we are actually interested in however are the principle components/ellipse axes how do we get those from our covariance matrix?

 B_{minor}

B_{majo}

Math Review: Eigenvectors/Eigenvalues

• Definition: $v \neq 0$ is an **eigenvector** of a matrix H if $Hv = \lambda v$

where λ is a scalar, called the **eigenvalue** of $oldsymbol{v}$

Geometric Intuition:

- A general transformation may be defined I = H v
- v is an eigenvector of H if multiplication (transformation) by H preserves v's direction
- Vectors in the direction of the axis of rotation are unchanged in a transformation...

v is **not** an eigenvector

Eigenvectors/values and Ellipse

- It turns out the eigenvectors/eigenvalues of our correlation matrix give us the direction/size of our ellipse axes!
 - Eigenvectors of A give us the basis (directions) of the ellipse's major/minor axis
 - Eigenvalues give us the size of the ellipse's major/minor axis
- Assume that we have eigenvectors $v_1, ..., v_M$ such that $\lambda_1 > \lambda_2 > \cdots > \lambda_M$
 - v_1 is the vector pointing in the direction of largest variance
 - v_M is the vector pointing in the direction of the **least variance**

Calculating Eigenvectors for Symmetric Matrix

• If Σ is a $M \times M$ symmetric matrix (like the covariance), then the singular value decomposition (SVD) of A:

 $\Sigma = U\Lambda U^T$

where U is an $M \times M$ matrix of the eigenvectors as columns, and Λ is an $M \times M$ diagonal matrix with the eigenvalues as the diagonal, i.e.

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_M), U = \begin{bmatrix} | & | & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 \cdots \boldsymbol{v}_M \\ | & | & | \end{bmatrix}$$

• There are many efficient implementations of SVD, so this is great!

Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces

PCA Application: EigenFaces

- EigenFaces uses PCA to recognize faces!
- Dataset: image patches of faces, dimensions 250×350 (75000-dimensional vectors)
- \overline{X} = "Mean" Face image
- $\boldsymbol{B}_1, \ldots, \boldsymbol{B}_d$ (where d < 20): the "eigenfaces"
- Each face patch in the dataset can be represented as a linear combination of the "eigenfaces"

EigenFaces: Database Creation Algorithm

Given N face patches $X_1, ..., X_N$ of dimension M=75000:

1) Calculate mean of image patch vectors

$$\overline{X} = \frac{1}{N} \sum X_i$$

2) Subtract the mean from all patches (centre)

$$Z_i = X_i - \overline{X}$$

- 3) Create an $M \times N$ matrix of all centred patch vectors (arranged as columns of matrix) $Z = \begin{bmatrix} Z_1 & Z_2 \cdots & Z_N \end{bmatrix}$
- 4) Find *eigenvectors* $B_1, ..., B_d$ corresponding to the d (where d < 15) largest *eigenvalues* $\lambda_1, ..., \lambda_d$ of the correlation matrix ZZ^T
- 5) Store the eigenvectors $B_1, ..., B_d$, mean image \overline{X} and vectors in new d-dimensional basis $Y_i = \begin{bmatrix} Y_i^1 & Y_i^2 \cdots & Y_i^d \end{bmatrix}$

EigenFaces

"Mean" Face (not so mean!)

Top-6 Eigenvectors

EigenFaces: Representing a Face

- We can represent any face as a linear combination of the basis vectors.
- Not very flattering, but consider this image is represented as only 3 numbers in the database!
- Storage for N faces: Images: 75000N
 EigenFaces: 4 · 75000 + 3N

Y.*

+ y²*

EigenFaces: Recognition

Given a query image *T* and our EigenFaces database

- 1. Compute coordinates of T in the EigenFaces basis, i.e. j^{th} coord: $S_i^j = B_j^T T$
- 2. Find the vector \boldsymbol{Y}_i in the database that is closest to \boldsymbol{S}_i
- 3. Return face image X_i , i.e. the vector in the original image space

End of Topic 6