Topic 6: 2D Images and Curves

- **Images as Vectors**
- Template Matching
- Cross-Correlation
- Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces
Images as Arrays

- We are used to seeing images/image patches displayed in 2D
- However, they are stored in memory as 1D arrays:

$$I(x, y)$$

(5x5)

$$X(x)$$

(25)
Images as Vectors

• Of course we can also consider the 1D array as a N-dimensional vector, where N is the length of the array, or area of the image:

\[
\begin{pmatrix}
 x_1 & x_2 & \cdots & x_M \\
 x_{M+1} \\
 \vdots \\
 x_{(N-2)M+1} & \cdots & x_{N\times M}
\end{pmatrix}
\]

Image Patch \(I(x, y) \)
\((N\times M)\)

\[
\begin{pmatrix}
 x_1 & \cdots & x_M & x_{M+1} & \cdots & x_{21} & x_{22} & x_{23} & x_{24}
\end{pmatrix}
\]

Image Array \(X(x) \) (25)

\[I(x, y) = X(x + My)\]
Image Patches as Vectors

• Say we are interested in image patches of dimensions 1×3 from an image of size 1×9

• How many patches can we extract?
 • Imagine sliding 1×3 window
 • $[50, 255, 30], [255, 30, 50], \ldots, [176, 220, 160]$
 • Get 7 possible patches – due to “boundary”

• Each of these is a vector in a 3D space!

• In general, a patch of size $N \times M$ can be thought of as a point in an NM dimensional space, where each pixel is a different axis.
Takeaway: Images as Vectors

- We can consider any 2D image or image patch as its "flattened" array.
- For any image/image patch with N rows and M columns, we can also consider this array as a N*M-dimensional vector:

\[
\begin{bmatrix}
 x_1 & \cdots & x_M & x_{M+1} & \cdots & x_{NM}
\end{bmatrix}
\]

Image Array \(X(x)\)
\((NM)\)

\[
\begin{bmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_M \\
 x_{M+1} \\
 \vdots \\
 x_{NM}
\end{bmatrix}
\]

Image Vector \(X\)
Topic 6: 2D Images and Curves

• Images as Vectors
• **Template Matching**
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces
Template Matching

• Given a “template” patch \(T \) and we want to find an image patch \(X_i \in I \) that is most similar to our template.

• How do we calculate a “similarity” metric?
Similarity Metric #1: Distance

• Given a “template” patch T and we want to find an image patch $x_i \in I$ that is most similar to our template.

• As we have seen, we can consider our image patches (and template) to be vectors.

• Let’s try using the Euclidean distance between our two vectors as our similarity metric:

$$\|X_i - T\| = \sqrt{(X_i - T)^T (X_i - T)}$$

• In some contexts this is known as the root-mean-square (RMS) error.
Template Matching using Distance

• Goal: Find image patch $x_i \in I$ that is **most similar** to given template T

• Image patch $x_i \in I$ is calculated:

$$\text{argmin}_{x_i} \|X_i - T\|$$

• The notation $\text{argmin}_x f(x)$ is shorthand for “give the value of x that minimizes $f(x)$”
Template Matching using Distance

\[\|X_i - T\| = \sqrt{(X_i - T)^T (X_i - T)} \]

• Relatively expensive sqrt computation, however:

\[\text{argmin}_{X_i} \|X_i - T\| = \text{argmin}_{X_i} \|X_i - T\|^2 \]

• distance is minimized \(\iff \) squared distance is minimized

\[\text{argmin}_{X_i} (X_i - T)^T (X_i - T) \]
2D Template Matching

• Let’s look at a 2D example

Let’s consider a 2D example where our template and image patches are 3×3 patches or 9D vectors.

![Template and Image Arrays](image)

Template T (3×3)

$T = \begin{bmatrix}
50 & 255 & 90 \\
80 & 200 & 100 \\
150 & 90 & 30
\end{bmatrix}$

Image 2D Array $I(x, y)$ (9×3)

i.e. 7 3×3 patches

$X_4 = \begin{bmatrix}
80 & 30 & 100 \\
50 & 60 & 30 \\
30 & 60 & 30 \\
80 & 90 & 100 \\
250 & 100 & 240
\end{bmatrix}$

• Now our template and image patches are 3×3 patches or 9D vectors

Note: The actual image and table content is not visible in the text representation.
2D Template Matching

• Consider the template (or any patch) to have it’s origin (0,0) in the patch centre

• Instead of explicitly remapping our template/patches into 1D vectors, we can use the write an expression based on the 2D arrays

• For each patch at location \((r, c) \) in image \(I \), we calculate the 2D sum:

\[
\text{dist}(r, c) = \sqrt{\sum_{a=-N}^{N} \sum_{b=-N}^{N} (I(r + a, c + b) - T(a, b))^2}
\]

where \(N \) is the “radius” of a patch, i.e. 1 for our \(3 \times 3 \) template with indices in the range \([-1,1]\)
Basic Template Matching Algorithm

\[
\text{dist}(r, c) = \sqrt{\sum_{a=-N}^{N} \sum_{b=-N}^{N} (I(r + a, c + b) - T(a, b))^2}
\]

• Define an “output” image of size equal to the “input” image \(I \)

• Compute \(\text{dist}(r, c) \) for every pixel location \(r, c \) in image \(I \) where the computation is possible
 • i.e. not on the “border” pixels where the template does not “fit”

• Search the image for the location of the lowest distance value – this location is the closest match
Distance as Similarity

• Let’s think about what our similarity metric means...
• Which of the vectors is closest to the red vector?
• Blue – and distance will tell us this

• **But** what about if the vectors are image patches...
Scaled Image Example
Distance as Similarity

- If vectors are image patches, the green vector is a **scaled** version of the red vector (i.e. brighter image), with some noise!
- Blue is different in some other ways, that are probably more perceptible to us as Humans!
Distance as Similarity

• We would tend to see images with different scaling (brightness) as very similar, at least compared to other changes.

• Our distance-based similarity metric cannot distinguish between patches that are just scaled versions of the template T, and patches that differ in other ways!
Topic 6: 2D Images and Curves

- Images as Vectors
- Template Matching
- **Cross-Correlation**
 - Template Matching using Cross-Correlation
- Dimensionality Reduction
- Principle Component Analysis (PCA)
- Understanding PCA
- Case Study: EigenFaces
Similarity Metric #2: Cross-Correlation

• Goal: Find the image patch $x_i \in I$ that is most similar to given template T

• Let’s define a new similarity metric:

$$CC(X_i^T, T) = X_i^T \cdot T$$

i.e. the dot-product of the vectors X_i, T

• This is called the cross-correlation, or more intuitively the “sliding dot-product”

• Why is this nicer than distance?
Cross-Correlation as a Similarity Metric

• Recall the dot product is also defined:

\[
a \cdot b = ||a||||b|| \cos \theta
\]

• Depends on the angle between the vectors
 • If \(\theta \) is small, dot product is large
 • Maximized when \(a, b \) are in the same direction (i.e. \(\theta = 0^\circ \))
 • Zero when \(a, b \) are orthogonal, i.e. \(\theta = 90^\circ \)

• Also depends on the length of the vectors \(a, b \)
Similarity Metric #3: Normalized Cross-Correlation

\[
CC(X_i^T, T) = X_i^T \cdot T = \|X_i^T\|\|T\| \cos \theta
\]

• It is somewhat intuitive that we want image patch vectors with similar directions to be considered similar
• But this measure clearly biases towards vectors with larger lengths – this doesn’t make much sense
• Instead, let’s normalize the result so it is independent of the vector magnitudes...

\[
NCC(X_i^T, T) = \frac{X_i^T \cdot T}{\|X_i^T\|\|T\|}
\]
Normalized Cross-Correlation

\[\text{NCC}(X_i^T, T) = \frac{X_i^T \cdot T}{\|X_i^T\|\|T\|} = \cos \theta \]

- This is actually just the cosine of the angle between the vectors! (or dot product of unit vectors \(X_i^T, \hat{T} \))
- Properties:
 - Independent of norm of image patches (length of vector)
 - \(= 1.0 \) (max) when the intensities of \(X_i^T, T \) are identical (to a scale factor)
 - \(= 0.0 \) (min) when \(X_i^T, T \) are orthogonal (most dissimilar)
Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• **Template Matching using Cross-Correlation**
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces
2D Template Matching Using Cross-Correlation

• For each patch at location \((r, c)\) in image \(I\), we calculate the 2D sum:

\[
CC(r, c) = \sum_{a=-N}^{N} \sum_{b=-N}^{N} I(r + a, c + b) T(a, b)
\]

where \(N\) is the “radius” of a patch as before.
Template Matching: Computational Issues

- Assume a template with M pixels, and an image with N pixels
 - For example, if our image is 1000×1000, $N = 10^6$
 - If our template is 32×32, $M = 32^2 = 1024$
- For each patch, the CC metric requires M multiplications, $M - 1$ additions
- Total $O(NM)$ operations for entire image!
Template Matching: Computational Issues

- Total $O(NM)$ operations for entire image, where N and M are very large.
- Clearly template matching is very expensive!
- What if we could represent patches X_i^T, T with only $d \ll M$ dimensions?
- Would have $O(dm)$

Dimensionality Reduction
Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces
Math Refresher: Basis Vectors

• Vectors are expressed relative to basis
• Typically this is the standard basis, i.e. for the Euclidean 2D space, the basis vectors are:

\[e_x = (0, 1) \equiv \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad e_y = (1, 0) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

• Any vector we have in this space is uniquely represented as a linear combination of the basis vectors, e.g.:

\[\mathbf{v} = (3, 3) = 3e_x + 3e_y \]
Math Refresher: Change of Basis

- We can use a non-standard basis to represent any vector.
- For example, perhaps we want to represent this vector with a new basis B:

 $$i_B = (1,1), j_B = (-1,1)$$

- Notice that in this new basis one of our basis vectors is the unit vector \hat{v}.
- Under our new basis, $v_B = 3i_B \equiv (3, 0)$.
Natural Images are not Random
Natural Images

• We would not expect to see the bottom image out of our camera! (white noise)
• However, both of these are valid vectors in the same N-dimensional image space!
• Natural images have **structure**
• Even if we considered all possible natural images, they would occupy only a fraction of the full N-dimensional space
• How can we take advantage of this?
Linear Dimensionality Reduction: Intuition

Case A: pixel intensities are unrelated

- What would we expect our space of image patches to look like?
- For simplicity, assume our patches/templates are 2-pixels long!
- Image patch vectors should look random, uncorrelated, with no discernable relationship between pixels.
Linear Dimensionality Reduction: Intuition

Case B: *pixel intensities are related*

- What would we expect our space of image patches to look like?
- Image patch vectors have a trend, are correlated, with relationships between pixels.
Linear Dimensionality Reduction: Intuition

Case A: pixel intensities are *unrelated*

Case B: pixel intensities are *related*
Linear Dimensionality Reduction: Intuition

• What happens if we change basis?

\[X_i = \begin{bmatrix} X_i^1 \\ X_i^2 \end{bmatrix} = X_i^1 e_x + X_i^2 e_y \]

\[X_i = \begin{bmatrix} Y_i^1 \\ Y_i^2 \end{bmatrix} = Y_i^1 B_1 + Y_i^2 B_2 \approx Y_i^1 B_1 \]
Linear Dimensionality Reduction: Intuition

• Idea: When pixel intensities are related, we can express a patch in terms of basis vectors where only a few of the coordinates are significant (i.e. not close to 0)

• This is a nutshell is linear dimensionality reduction: remove unneeded dimensionality

• This really depends on the basis we choose!

\[
X_i = \begin{bmatrix} Y_{i1}^1 \\ Y_{i2}^2 \end{bmatrix} = Y_{i1}^1 B_1 + Y_{i2}^2 B_2 \approx Y_{i1}^1 B_1
\]
How Vector Components Change with Basis

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
Intermission
Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces
Principle Components

• What we want to find are the **principle components** of the data, i.e. the directions in which the data shows the most variation

• First we need to know how to change basis!
Changing Basis: Matrix Notation

Single Patch: \(X_i = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_i^1 \\ X_i^2 \end{bmatrix} \)

coordinate vector

basis matrix
(columns are basis vectors)

(standard basis)

(general basis)

\[
X_i = \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} Y_i^1 \\ Y_i^2 \end{bmatrix}
\]

N 2-dim Patches: \(X_i = \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} Y_1^1 & Y_2^1 & \cdots & Y_N^1 \\ Y_1^2 & Y_2^2 & \cdots & Y_N^2 \end{bmatrix} \)
Changing Basis: Matrix Notation

\(N \) 2-dim Patches: \(X_i = \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} Y_1^1 & Y_2^1 & \cdots & Y_N^1 \\ Y_1^2 & Y_2^2 & \cdots & Y_N^2 \end{bmatrix} \)

\(N \) M-dim Patches:

\[
\begin{bmatrix} X_1 & X_2 & \cdots & X_N \end{bmatrix} = \begin{bmatrix} B_1 & B_2 & \cdots & B_M \end{bmatrix} \begin{bmatrix} Y_1^1 & Y_2^1 & \cdots & Y_N^1 \\ Y_1^2 & Y_2^2 & \cdots & Y_N^2 \\ \vdots & \vdots & \ddots & \vdots \\ Y_1^M & Y_2^M & \cdots & Y_N^M \end{bmatrix}
\]
Changing Basis: Matrix Notation

- Want to choose $B_1, ..., B_M$ such that $Y_1^j \approx 0$ for $d < j \leq M$, i.e.:

$$
\begin{bmatrix}
X_1 & X_2 & \cdots & X_N
\end{bmatrix} =
\begin{bmatrix}
B_1 & B_2 & \cdots & B_M
\end{bmatrix}
\begin{bmatrix}
Y_1^1 & Y_2^1 & \cdots & Y_N^1 \\
\vdots & \vdots & \ddots & \vdots \\
Y_1^d & Y_2^d & \cdots & Y_N^d \\
Y_1^{d+1} & Y_2^{d+1} & \cdots & Y_N^{d+1} \\
\vdots & \vdots & \ddots & \vdots \\
Y_1^M & Y_2^M & \cdots & Y_N^M
\end{bmatrix}$$

all ≈ 0
Changing Basis: Matrix Notation

\[
\begin{bmatrix}
X_1 & X_2 & \cdots & X_N
\end{bmatrix} =
\begin{bmatrix}
B_1 & \cdots & B_d
\end{bmatrix}
\begin{bmatrix}
Y_1^1 & Y_2^1 & \cdots & Y_N^1 \\
\vdots & \vdots & \ddots & \vdots \\
Y_1^d & Y_2^d & \cdots & Y_N^d \\
\vdots & \vdots & \ddots & \vdots \\
Y_1^{d+1} & Y_2^{d+1} & \cdots & Y_N^{d+1} \\
\vdots & \vdots & \ddots & \vdots \\
Y_1^M & Y_2^M & \cdots & Y_N^M
\end{bmatrix}
\]

• Assume we find such a basis \(B_1, \ldots, B_M \)

• We can approximate the the patches using only the first \(d \) components of the patch vectors

• We have a \(d \)-dimensional approximation!
Principle Component Analysis (PCA) Algorithm

Given N image patches of M dimensions:

1) Calculate mean of image patch vectors

$$\bar{X} = \frac{1}{N} \sum X_i$$

2) Subtract the mean from all patches (centre)

$$Z_i = X_i - \bar{X}$$

3) Create an $M \times N$ matrix of all centred patch vectors (arranged as columns of matrix)

$$Z = [Z_1 \quad Z_2 \cdots \quad Z_N]$$

4) Find eigenvectors $B_1, ..., B_d$ corresponding to the d (where $d \ll M$) largest eigenvalues $\lambda_1, ..., \lambda_d$ of the correlation matrix $\Sigma = ZZ^T$
Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces
Understanding PCA

• This is the algorithm (that you should know), and it’s immensely useful – possibly one of the most useful things you can learn in this course

• However, we haven’t explained why it works! Or for that matter what eigenvectors/eigenvalues are…

• Here we will attempt to gain an understanding what PCA is doing, and why it works

• You should take away at least the following: what is the covariance matrix, and the SVD of the covariance gives us the eigenvectors/values
Principle Component Analysis (PCA): Intuition

• This is all great! We understand we want to find a basis of principle components
• But how do we find this basis?
• Let’s look at an example, here (again) are our 2-dimensional image patches
Principle Component Analysis (PCA): Intuition

• Let’s look at an example, here (again) are our 2-dimensional image patches

• We would like to find two orthogonal vectors:
 • major direction of the largest data variance
 • minor direction of least variance
Principle Component Analysis (PCA): Intuition

• Let’s put our computer vision hat back on for a minute...

• Can we find a shape to contain this data that would tell us the major and minor axis of variation?

• Hint: not a line – line only gives us one direction!
Principle Component Analysis (PCA): Intuition

• Let’s put our computer vision hat back on for a minute...

• Can we find a shape to contain this data that would tell us the major and minor axis of variation?

• Hint: not a line – line only gives us one direction!

• Hint2: what shape has a major and minor axis?
PCA as Ellipse Fitting

• This is similar to modelling our data’s variance using an ellipse!

• Equation of an ellipse:

\[
\frac{(x - c_1)^2}{a^2} + \frac{(y - c_2)^2}{b^2} = 1
\]

• The centre of the ellipse is simply the mean of data:

\[
\bar{X} = \frac{1}{N} \sum X_i
\]

• We can subtract this mean from our data, giving us an ellipse centred on the origin:

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]
PCA as Ellipse Fitting

• What are the lengths of our major and minor axis?

\[\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} = 1 \]

• “Spread” i.e. standard deviation of our data in the x, y axes:

σ_x, σ_y

• Recall, the sample variance of a dataset X (where \overline{X} is the mean):

$$\sigma^2(X) = \frac{1}{N} \sum (X_i - \overline{X})^2$$
PCA as Ellipse Fitting

• What about a non-axis aligned ellipse?

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

• In our equation of the ellipse, a, b are the x and y components of major/minor axis

• Variance is also only defined in terms of x and y components!

\[\sigma^2_X (X^x) = \frac{1}{N} \sum \left(X_i^x - \bar{X}^x \right)^2 \]

• In 2D, we must look at more general form of variance: covariance
Covariance

• We define covariance:

\[\text{cov}(X, Y) = \frac{1}{N} \sum (X_i - \bar{X}^X)(Y_i - \bar{Y}^Y) \]

• Notice, variance is a special case of covariance

\[\sigma^2(X) = \text{cov}(X, X) \]

• In 2D, we have 4 possible covariances, represented in the covariance matrix

\[\Sigma(X, Y) = \begin{bmatrix} \text{cov}(X, X) & \text{cov}(X, Y) \\ \text{cov}(Y, X) & \text{cov}(Y, Y) \end{bmatrix} \]

Covariance Matrix

- This is the **covariance matrix**

\[
\Sigma(X, Y) = \begin{bmatrix}
\text{cov}(X, X) & \text{cov}(X, Y) \\
\text{cov}(Y, X) & \text{cov}(Y, Y)
\end{bmatrix}
\]

- Note: this matrix is symmetric since \(\text{cov}(X, Y) = \text{cov}(Y, X)\)

- If our data is **uncorrelated**, the covariance matrix will be of the form:

\[
\Sigma(X, Y) = \begin{bmatrix}
\sigma_X^2 & 0 \\
0 & \sigma_Y^2
\end{bmatrix}
\]
Covariance Matrix - Intuition

• The off-diagonal terms of the covariance matrix give us an idea of the relationship of the data across dimensions

• Note that if the off-diagonal terms are zero, there is no obvious inter-dimension relationship!

Ellipsoid Equation

Ellipsoid (N-dim Ellipse) Equation:

$$(X - \mu)^T A^{-1} (X - \mu) = 1$$

where A^{-1} is an inverse transformation matrix ($N \times N$), and X, μ are N dimensional (col) vectors

• Here, the Ellipsoid is defined explicitly as a linearly transformed (scaled/rotated) unit circle/sphere:

$$(X - a)^T (X - b) = r^2$$

https://datascienceplus.com/understanding-the-covariance-matrix/
Covariance as a Transformation Matrix

Ellipsoid (N-dim Ellipse) Equation:
\[(X - \mu)^T \Sigma^{-1} (X - \mu) = 1\]

where \(\Sigma^{-1}\) is the inverse covariance matrix \((N \times N)\), and \(X, \mu\) are N dimensional (col) vectors

- The covariance \(\Sigma\) is actually a linear transformation telling us how our data differs from a dataset with no correlations.

- What we are actually interested in however are the principle components/ellipse axes – how do we get those from our covariance matrix?

https://datascienceplus.com/understanding-the-covariance-matrix/
Math Review: Eigenvectors/Eigenvalues

• Definition: \(\mathbf{v} \neq 0 \) is an eigenvector of a matrix \(H \) if

\[
H \mathbf{v} = \lambda \mathbf{v}
\]

where \(\lambda \) is a scalar, called the eigenvalue of \(\mathbf{v} \)

Geometric Intuition:
• A general transformation may be defined

\[
I = H \mathbf{v}
\]

• \(\mathbf{v} \) is an eigenvector of \(H \) if multiplication (transformation) by \(H \) preserves \(\mathbf{v} \)’s direction
• Vectors in the direction of the axis of rotation are unchanged in a transformation...
It turns out the eigenvectors/eigenvalues of our correlation matrix give us the direction/size of our ellipse axes!

- Eigenvectors of A give us the basis (directions) of the ellipse’s major/minor axis
- Eigenvalues give us the size of the ellipse’s major/minor axis

 Assume that we have eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_M$ such that $\lambda_1 > \lambda_2 > \cdots > \lambda_M$

- \mathbf{v}_1 is the vector pointing in the direction of largest variance
- \mathbf{v}_M is the vector pointing in the direction of the least variance
Calculating Eigenvectors for Symmetric Matrix

• If Σ is a $M \times M$ symmetric matrix (like the covariance), then the singular value decomposition (SVD) of Σ:

$$
Σ = UΛU^T
$$

where U is an $M \times M$ matrix of the eigenvectors as columns, and $Λ$ is an $M \times M$ diagonal matrix with the eigenvalues as the diagonal, i.e.

$$
Λ = \text{diag}(λ_1, ..., λ_M), U = \begin{bmatrix} v_1 & v_2 & \cdots & v_M \end{bmatrix}
$$

• There are many efficient implementations of SVD, so this is great!
Topic 6: 2D Images and Curves

• Images as Vectors
• Template Matching
• Cross-Correlation
• Template Matching using Cross-Correlation
• Dimensionality Reduction
• Principle Component Analysis (PCA)
• Understanding PCA
• Case Study: EigenFaces
PCA Application: EigenFaces

• EigenFaces uses PCA to recognize faces!

• Dataset: image patches of faces, dimensions 250×350 (75000-dimensional vectors)

• $\bar{X} =$ ”Mean” Face image

• B_1, \ldots, B_d (where $d < 20$): the “eigenfaces”

• Each face patch in the dataset can be represented as a linear combination of the “eigenfaces”
EigenFaces: Database Creation Algorithm

Given N face patches X_1, \ldots, X_N of dimension $M=75000$:

1) Calculate mean of image patch vectors

$$\bar{X} = \frac{1}{N} \sum X_i$$

2) Subtract the mean from all patches (centre)

$$Z_i = X_i - \bar{X}$$

3) Create an $M \times N$ matrix of all centred patch vectors (arranged as columns of matrix)

$$Z = [Z_1 \ Z_2 \ldots \ Z_N]$$

4) Find eigenvectors B_1, \ldots, B_d corresponding to the d (where $d < 15$) largest eigenvalues

$$\lambda_1, \ldots, \lambda_d$$ of the correlation matrix ZZ^T

5) Store the eigenvectors B_1, \ldots, B_d, mean image \bar{X} and vectors in new d-dimensional basis $Y_i = [Y_i^1 \ Y_i^2 \ldots \ Y_i^d]$
EigenFaces

“Mean” Face

(not so mean!)

Top-6 Eigenvectors
EigenFaces: Representing a Face

• We can represent any face as a linear combination of the basis vectors.
• Not very flattering, but consider this image is represented as only 3 numbers in the database!
• Storage for N faces:
 Images: 75000N
 EigenFaces: $4 \cdot 75000 + 3N$

$$X = \sum_{i=1}^{d} y_i \cdot B_i$$

$$X_\perp (M \text{ dimensions}) \quad X_\perp (d \text{-dimensional})$$

Images:
$$X_1, X_2, X_3$$
EigenFaces: Recognition

Given a query image T and our EigenFaces database

1. Compute coordinates of T in the EigenFaces basis, i.e. j^{th} coord:
 \[s_i^j = B_j^T T \]

2. Find the vector Y_i in the database that is closest to S_i

3. Return face image X_i, i.e. the vector in the original image space
End of Topic 6