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Images as Arrays

* We are used to seeing images/image patches displayed in 2D
* However, they are stored in memory as 1D arrays:

X1 | X2 | X3 | X3 | X5 | X | X7 | Xg X21| X22

Image 1D Array X (x)
(25)

Image 2D Array I(x, y)
(5%5)



Images as Vectors

* Of course we can also consider the 1D array as a N-dimensional
vector, where N is the length of the array, or area of the image:

S xl e Xy XMa1

Image Array X(x) (N)

I(x,y) =X(x+ M(y — 1))
Image Patch I(x, y)

(NXM)



Image Patches as Vectors

T |9x1d

Z |axid

€ |axid
T 19xid
Z 1sxid
€ 1oxid

. .. 50 1255|30 |50 @3 |122
e Say we are interested in image patches of ———
dimensions 1X3 from an image of size 1X9

~ Image I(x, y)
9)
* How many patches can we extract?
* Imagine sliding 1X3 window

* [50, 255, 30], [255, 30, 50], ..., [176, 220, 160]
* Get 7 possible patches — due to “boundary”

* Each of these is a vector in a 3D space!

176 |220 |160

T [9x1d
1d

Z 1axid
€ |9X

" 250

" 200

* In general, a patch of size NXM can be
thought of as a point in an NM dimensional B
space, where each pixel is a different axis

o

Axis for pixel 3



Takeaway: Images as Vectors

* We can consider any 2D image or image patch as it’s “flattened” array

* For any image/image patch with N rows and M columns, we can also
consider this array as a N*M-dimensional vector:

XM | XM+ XNM

XM Image Vector X
Image Array X (x) Xpf41

(NM)
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Template Matching

* Given a “template” patch T and we want to find
an image patch X; € I that is most similar to our
template

* How do we calculate a “similarity” metric?

X4

20

300

21

Template T

X7

50

255

30

50

3

122

176

220

160

Xo

Image 1(x, y)
9)




Similarity Metric #1: Distance 20 [300] 2

Template T

* Given a “template” patch T and we want to find an
image patch x; € I that is most similar to our 50 255 30 |50 | 3 122 176|220 160
template

. - Image 1(x, y)
* As we have seen, we can consider our image patches %o 9 d

(and template) to be vectors

* Let’s try using the Euclidean distance between our
two vectors as our similarity metric :

1X; — Tl = (X; = T)T(X; — T)

* |In some contexts this is known as the root-mean-square
(RMS) error




Template Matching using Distance 20 [300] 2

Template T
* Goal: Find image patch x; € I that is most
Similar tO given template T 50 |[255| 30 |50 | 3 122|176 (220 160
* Image patch x; € is calculated: Xo Imag?(gx,y)

argminy,[|X; — T|

* The notation argmin, f(x) is shorthand for
“give the value of x that minimizes f (x)”




Template Matching using Distance 20 300

Template T
. — — o T o
”Xl T” - \/(Xl T) (Xl T) 50 [255|30 |50 | 3 122|176 |220 |160
* Relatively expensive sqrt computation, however: Xo |mag?9|§x,y)

argminy || X; — T|| = argminy |[X; — T||?

e distance is minimized <>squared distance is
minimized
argminy, (X; — T)" (X; — T)




2D Template Matching

* Let’s look at a 2D example

50 [255]| 90

row Q0—> | 80 [200 100

150 | 90 | 30

column 0

Template T
(3%3)

= 1200

S E0 1
255
90
80

100
150
90

| 30

MOW7r—»

50

255130 180 |30 100

50

200

250

80

200100450 | 60 | 30

30

60

30

150

90 | 30 |80 |90 100

250

100

240

T

column ¢

X4

Image 2D Array I(x, y)

(9%3)

i.e. 7 3X3 patches

- 80 -
30
100
50
60
30
80
90

-100-

* Now our template and image patches are 3X3 patches or 9D vectors



2D Template Matching

50 255/30 |80 |30 10050 |200 250

rowr—»| 80 |200{100)50 | 60 |30 |30 60 30

e Consider the template (or any patch) to have it’s 1501 90 |30 {80 | 90 100 {250 100 240
origin (0,0) in the patch centre T x,

* Instead of explicitly remapping our template/patches column ¢
into 1D vectors, we can use the write an expression Image 2D Array I(x, y)
based on the 2D arrays (9%3)

i.e. 7 3X3 patch
* For each patch at location (r, ¢) in image |, we € patches

calculate the 2D sum:

50 [255]| 90

N

dist(r,c) = z 2 (I(r +a,c+b)—T(a, b))

row 0—>| 80 [200 100

150 | 90 | 30
—N b=—N
column 0
where N is the “radius” of a patch, i.e. 1 for our 3X3 template with indices in Template T

the range [-1,1] (3%3)



Basic Template Matching Algorithm

dist(r, c) = z z (I(r+a,c+b)—T(a, b))2

V a=—N b=—N

* Define an “output” image of size equal to the “input” image I

* Compute dist(r, ¢) for every pixel location 7, ¢ in image I where the
computation is possible

* i.e. not on the “border” pixels where the template does not “fit”

* Search the image for the location of the lowest distance value — this
location is the closest match



Distance as Similarity

250
200

150

* Let’s think about what our similarity
metric means...

e Which of the vectors is closest to the
red vector?

 Blue — and distance will tell us this

100

50

e But what about if the vectors are
image patches...



Scaled Image Example
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250

Distance as Similarity

200

150

* If vectors are image patches, the
green vector is a scaled version of

the red vector (i.e. brighter image),
with some noise!

* Blue is different in some other ways,
that are probably more perceptible
to us as Humans!

100

50




Distance as Similarity -

I 200

I 150

* We would tend to see images with
different scaling (brightness) as very
similar, at least compared to other

changes

* Our distance-based similarity metric
cannot distinguish between patches
that are just scaled versions of the
template T, and patches that differ in

other ways!
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Similarity Metric #2: Cross-Correlation

* Goal: Find the image patch x; € I that is most

similar to given template T 20 |300) 21
* Let’s define a new similarity metric: Template T
T _ vT
CC(Xl ) T) - Xl ) T 50 [255| 30 |50 | 3 122|176 |220 |160

X, Imagel(x,y)

i.e. the dot-product of the vectors X;, T (9)

e This is called the cross-correlation, or more
intuitively the “sliding dot-product”

* Why is this nicer than distance?



Cross-Correlation as a Similarity Metric

* Recall the dot product is also defined:

a -b = ||all||b]| cos &

* Depends on the angle between the vectors

* If 8 is small, dot product is large
* Maximized when a, b are in the same direction (i.e. 8 = 0°)
e Zero when a, b are orthogonal, i.e. 8 = 90°

 Also depends on the length of the vectors a, b

90°



Similarity Metric #3: Normalized Cross-Correlation

cC(X7,T) = X7 -T = ||XT||IITl cos &

* It is somewhat intuitive that we want image patch
vectors with similar directions to be considered similar

* But this measure clearly biases towards vectors with
larger lengths — this doesn’t make much sense

* Instead, let’s normalize the result so it is independent of
the vector magnitudes...

NCC(X],T) = il

HXTHIITII <



Normalized Cross-Correlation

- T
NCC(X ) HXTH” —CosH

* This is actually just the cosine of the angle between the
vectors! (or dot product of unit vectors Xl-T, T)

* Properties:
* Independent of norm of image patches (length of vector)

= 1.0 (max) when the intensities of Xl-T, T are identical (to a
scale factor)

= 0.0 (min) when XiT, T are orthogonal (most dissimilar)

»
»

90°

Q)
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2D Template Matching Using

CFOSS-COFFE|atIOﬂ 50 255 30 |80 |30 [100|50 200 250
rowr |80 200/100|50 | 60 |30 |30 | 60 |30
* For each patch at location (r, ¢) in image |, we 1°0]%0 159 159 %9 [100[pS0]100/240
calculate the 2D sum: ol X4
Image 2D Array I(x, y)
N N | (9x3)
CC(r,c) = z 2 I(r+a,c+b)T(ab) 8.7 33 patches
a=—N b=—N
50 255 90
where N is the “radius” of a patch as before. row 0—> | 80 | 200 100
150 | 90 | 30
column 0
Template T

(3%3)




Template Matching: Computational Issues

Lo

Template T
(M pixels)

[ty

Image 2D Array I(x, y)
(N pixels)

* Assume a template with M pixels, and an image

with N pixels

* For example, if our image is 10001000, N = 10°

* If our template is 32x32, M = 32% = 1024
* For each patch, the CC metric requires

M multiplications, M — 1 additions

* Total O(NM) operations for entire image!

Image Patch X;(x,y) [
(M pixels)

Similarity Metrics:

dist>(X7,T)=(X; - T)"(X; - T)

CC(X/,T)=X!-T
X T

NCC(XT, T) =
(X0T) = i




Template Matching: Computational Issues

Lo

Image 2D Array I(x, y) Image Patch X;(x,y) [7°]
(N pixels) (M pixels)

Template T
(M pixels)

|t | %3
» Total O(NM) operations for entire image, where N and M are very large
* Clearly template matching is very expensive!

* What if we could represent patches Xl-T, T with only d < M dimensions
* Would have 0(dM)

Dimensionality Reduction
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Math Refresher: Basis Vectors

* Vectors are expressed relative to basis

e Typically this is the standard basis, i.e. for the
Euclidean 2D space, the basis vectors are:

e.=0D=[]], e =00=]]

* Any vector we have in this sBace isuniquely
represented as a linear combination of the basis
vectors, e.g.:

v=(33)=3e,+3e,




Math Refresher: Change of Basis

* We can use a non-standard basis to represent
any vector

* For example, perhaps we want to represent this
vector with a new basis B:

ipg =(1,1),jp =(-11)

 Notice that in this new basis one of our basis
vectors is the unit vector v

* Under our new basis, vz = 3iz = (3,0)

A
y

€y = [(1)] A

[

=

3
3

=

3
3




Natural Images are not Random

f

oS

.
55




Natural Images

We would not expect to see the bottom
image out of our camera! (white noise)

However, both of these are valid vectors
in the same N-dimensional image space!

Natural images have structure

Even if we considered all possible natural
images, they would occupy only a fraction
of the full N-dimensional space

How can we take advantage of this?




Linear Dimensionality Reduction:

Case A: pixel intensities are unrelated

* What would we expect our space of image
patches to look like?

Intensity of pixel 2

* For simplicity, assume our patches/templates
are 2-pixels long!

* Image patch vectors should look random,

uncorrelated, with no discernable relationship [°] |

between pixels

Intuition

500:0 ...:O. ° ...
o: ....QXL :."zo.o. .
f. .:o oo 'ng.. o o,

[1 Intensity of pixel 1



Linear Dimensionality Reduction: Intuition

Case B: pixel intensities are related

* What would we expect our space of image
patches to look like?

Intensity of pixel 2

* Image patch vectors have a trend, are
correlated, with relationships between pixels

0.9
,,,3”.3"(‘:"' B

|

1
0

Intensity of pixel 1



Linear Dimensionality Reduction: Intuition

Case A: pixel intensities are unrelated Case B: pixel intensities are related
~ A ~ A
¢ [ E
< a® @ o ¢ ¢ * =
> o >
R I
£ ® .' .o. °© o 2
% ® ox; ® .° °
o ° : ® o P
® e 0 o ®
v ® O
¢ "o 0. o %, °.® Ve
T; ® '\‘ X
0 40 ) o o P 0 A ‘ ° T. l
) |, 2 © o °*°% b ‘

[]_] Intensity of pixel 1 []_] Intensity of pixel 1

0



Linear Dimensionality Reduction: Intuition

* What happens if we change basis?

A A

Intensity of pixel 2
Intensity of pixel 2

8,° o 8.° o
Xigq0a® Xiq®a®
x4 0 %0 % ° 0 %0 % °
07 ] o 0' ut ‘ﬁoo""'
0
[1 o‘om fx} 82\ 5 G
[1 ] Intensity of pixel 1' Intensity of pixel 1'
0
Q

le = YilBl + Yisz ~ YilB1

X} vt ?
X; = [X;] =X/e, + X’e, X; = [ ]
{



Linear Dimensionality Reduction: Intuition

* Idea: When pixel intensities are related, we
can express a patch in terms of basis vectors
where only a few of the coordinates are
significant (i.e. not close to 0)

* This is a nutshell is linear dimensionality
reduction: remove unneeded dimensionality

"
=,
®

* This really depends on the basis we choose!




How Vector Components Change with Basis

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues



https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Intermission
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Principle Components

 What we want to find are the principle
components of the data, i.e. the
directions in which the data shows the
most variation

* First we need to know how to change
basis!




Changing Basis: Matrix Notation

basis matrix
(columns are basis vectors)

] [ ]}coordmate vector

Single Patch:

(standard basis)

(general basis)

N 2-dim Patches:

X;

B,

B,

B,

Intensity of pixel 2

standard basis

X;

[1] Intensity of pixel 1

general basis



Changing Basis: Matrix Notation

general basis

lrvivi 1
N 2-dim Patches: X; = B, B, [?2?2'“?\;
1 12 N

N M-dim Patches:

. 'Yll YZ1 YA}'
B1 B2 "'BM y12 y22 1\%
HyMyM yi

[X; Xz Xyl




Changing Basis: Matrix Notation

* Want to choose B, ..., B, such that Ylj ~ 0
ford <j<M,i.e.:

[X1 Xz"‘ XN]=

B4 A
yg Y# v
Bl BZ BM Y1d+1Y2d+1 Y]\Cli-l_l )
: >all ~ 0
LD C S ' I




Changing Basis: Matrix Notation
Yt v

yd yd
[X1 Xy e XN]= B, B,-B, 1 ’

Yy -

Yy

lﬁd+1yd+1 Yd+1
2 N

M
yl |

KLY
* Assume we find such a basis B4, ..., By,

* We can approximate the the patches using only
the first d components of the patch vectors

 We have a d-dimensional approximation!



Principle Component Analysis (PCA)
Algorithm

Given N image patches of M dimensions:
1) Calculate mean of image patch vectors

_ 1
=5 X
2) Subtract the mean from all patches (centre)
Zi — Xi - X
3) Create)an M XN matrix of all centred patch vectors (arranged as columns of
matrix
Z=12Z, Zp- Zy]

4) Find eigenvectors B, ..., B ; corresponding to the d (where d < M) largest
eigenvalues 14, ..., A4 of the covariance matrix

> =777
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Understanding PCA

* This is the algorithm (that you should know), and it’s immensely
useful — possibly one of the most useful things you can learn in this
course

* However, we haven’t explained why it works! Or for that matter what
eigenvectors/eigenvalues are...

* Here we will attempt to gain an understanding what PCA is doing, and
why it works

* You should take away at least the following: what is the covariance
matrix, and the SVD of the covariance gives us the
eigenvectors/values



Principle Component Analysis (PCA): Intuition

* This is all great! We understand we want to
find a basis of principle components

e But how do we find this basis?

Intensity of pixel 2

* Let’s look at an example, here (again) are our
2-dimensional image patches .°

Intensity of pixel 1



Principle Component Analysis (PCA): Intuition

* Let’s look at an example, here (again) are our
2-dimensional image patches

* We would like to find two orthogonal vectors:

* major direction of the largest data variance 8. >
* minor direction of least variance .,..' X,



Principle Component Analysis (PCA): Intuition

* Let’s put our computer vision hat back on for a
minute...

e Can we find a shape to contain this data that
would tell us the major and minor axis of

variation? Biminor .
)
o ®

Po o o A D¢

* Hint: not a line — line only gives us one
direction!



Principle Component Analysis (PCA): Intuition

* Let’s put our computer vision hat back on for a
minute...

e Can we find a shape to contain this data that
would tell us the major and minor axis of

variation? Brminor o
.y 5
P o wd x
 Hint: not a line — line only gives us one . 7y
direction!

* Hint2: what shape has a major and minor axis?



PCA as Ellipse Fitting

* This is similar to modelling our data’s variance using an ellipse!
* Equation of an ellipse:

(x — C1)2 (y — Cz)z w fe o o
2 T b2 =1 @"Xf '\EX_
* The centre of the ellipse is simply the mean of data:

_ 1

* We can subtract this mean from our data, giving us an ellipse centred
on the origin:




PCA as Ellipse Fitting

* What are the lengths of our major and minor axis?

2 2
Xy
—t—==1
0y Oy

* “Spread” i.e. standard deviation of our data in the x, y axes:
Oy, Oy

* Recall, the sample variance of a dataset X (where X is the mean):

1 _
() =7 ) (K = %)?



PCA as Ellipse Fitting

 What about a non-axis aligned eclipse?

* |[n our equation of the ellipse, a, b are the xand y
components of major/minor axis

e Variance is also only defined in terms of x and y
components!

1 _
R = 1 ) (XF = XY’

* In 2D, we must look at more general form of
variance: covariance




Covariance

* \We define covariance:
1 _ _
cov(X,Y) = NZ(XL- — XX)(Y; - X¥) ;

* Notice, variance is a special case of covariance A i
g%(X) = cov(X, X)

* In 2D, we have 4 possible covariances,
represented in the covariance matrix

cov(X,X) cov(X,Y)

20 = ovr. X)) cov(Y,Y)

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/



http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Covariance Matrix

* This is the covariance matrix
cov(X,X) cov(X,Y)

2(X, 1) = cov(Y,X) cov(Y,Y) T ey ¥ 0, T @
* Note: this matrix is symmetric since S & “;—(' i LI
COV(X, Y)= COV(Y, X) uncorrelated

* |f our data is uncorrelated, the covariance
matrix will be of the form:

gz 0
(X, Y) = [(;( 02]
Y

correlated



Covariance Matrix - Intuition

* The off-diagonal terms of the e
covariance matrix give us anidea .| g 1 e
of the relationship of the data T . TEE
across dimensions SR 2 RN ES

* Note that if the off-diagonal | - |
terms are zero, there is no B =N
obvious inter-dimension j ! |
relationship! R B

S S A

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/



http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Ellipsoid Equation
Ellipsoid (N-dim Ellipse) Equation:

X-p'AX-w=1

where A~1 is an inverse transformation matrix
(NXN), and X, u are N dimensional (col) vectors

* Here, the Ellipsoid is defined explicitly as a linearly
transformed (scaled/rotated) unit circle/sphere:

X-—pw'X—p) =r°

https://datascienceplus.com/understanding-the-covariance-matrix/

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/

Bmin

or

Bmajor

v



https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/
https://datascienceplus.com/understanding-the-covariance-matrix/

Covariance as a Transformation Matrix
Ellipsoid (N-dim Ellipse) Equation:
X-wWItX-mp=1

where 271 is the inverse covariance matrix (NXN),
and X, u are N dimensional (col) vectors

¢
* The covariance X is actually a linear transformation ‘ > f y—1

telling us how our data differs from a dataset with
no correlations

* What we are actually interested in however are the
principle components/ellipse axes — how do we get
those from our covariance matrix?

https://datascienceplus.com/understanding-the-covariance-matrix/

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/

A

»

B min

or

Bmajor

>

v


https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/
https://datascienceplus.com/understanding-the-covariance-matrix/

Math Review: Eigenvectors/Eigenvalues
y
Hv
* Definition: v # 0 is an eigenvector of a matrix H if
Hv = Av %
where A is a scalar, called the eigenvalue of v )
Geometric Intuition: v is not an eigenvector
* A general transformation may be defined B
I = Hv .

* v is an eigenvector of H if multiplication
(transformation) by H preserves v’s direction

e \VVectors in the direction of the axis of rotation are v
unchanged in a transformation...

»
»

X

v is an eigenvector



Eigenvectors/values and Ellipse

A
A0,

AV

v

* It turns out the eigenvectors/eigenvalues of our correlation matrix give us
the direction/size of our ellipse axes!

* Eigenvectors of A give us the basis (directions) of the ellipse’s major/minor axis
* Eigenvalues give us the size of the ellipse’s major/minor axis

* Assume that we have eigenvectors v4, ..., vy suchthat Ay > 4, > -+ > Ay,
* v4is the vector pointing in the direction of largest variance
* vy is the vector pointing in the direction of the least variance



Calculating Eigenvectors for Symmetric Matrix

e If X isa M XM symmetric matrix (like the covariance), then the singular
value decomposition (SVD) of A:

> = UAUT

where U is an M XM matrix of the eigenvectors as columns, and A is an
M XM diagonal matrix with the eigenvalues as the diagonal, i.e.

]
A= diag(/ll, ,AM),U =|V1 Vy:--Vy
L ]

* There are many efficient implementations of SVD, so this is great!
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PCA Application: EigenFaces

* EigenFaces uses PCA to recognize faces!

* Dataset: image patches of faces, dimensions
250%350 (75000-dimensional vectors)

« X =”Mean” Face image
*B,,...,B; (where d < 20): the “eigenfaces”

* Each face patch in the dataset can be
represented as a linear combination of the
“eigenfaces”

3 &

amber1. %ﬁ amberz, ﬂ't amber3. Elf am0y1 '8“ amDyz.ﬂit

ZSUXSD 25 x D ZSDXSD 250x300 250x300
83kb a3kb

andrew1. Elf andrewz.gif andrew3. Elf andy1 andy?2. |f

25 UXS 250x30 25 UXSU 259§8 U 250x3 0

568

and %If anital. anitaz.gi
x 30 250x3

R

arnab1 U%f arnab2 G%f arnab3 G%f chr|s1 gﬂf chnsz if




EigenFaces: Database Creation Algorithm

Given N face patches X4, ..., Xy of dimension M=75000:
1) Calculate mean of image patch vectors

_ 1

X=X
2) Subtract the mean from all patches (centre) B

Zi - Xi - X

3) Create an M XN matrix of all centred patch vectors (arranged as columns of matrix)
Z=12, Z,- Zy]

4)  Find eigenvectors B4, ..., B ; corresponding to the d (where d < 15) largest eigenvalues
A4, ..., A4 of the correlation matrix ZZ7

5) Store the eigenvectors By, ..., B, mean image X and vectors in new d-dimensional basis Y; =
v v v



EligenFaces

| - ‘

“Mean” Face

(not so mean!)

Top-6 Eigenvectors



EigenFaces: Representing a Face

X\ (M dimensions) X| (d-d.memaoml

aecerox d<=7%

* @l '-

* We can represent any face as
a linear combination of the
basis vectors.

* Not very flattering, but
consider this image is
represented as only 3
numbers in the database!

e Storage for N faces:

Images: 75000N
EigenFaces: 4 - 75000 4+ 3N

Y




EigenFaces: Recognition

Given a query image T and our EigenFaces database

1. Compute coordinates of T in the EigenFaces basis, i.e. jth coord:
S! =BT

2. Find the vectorY; inthe database that is closest to §;

3. Return face image X, , i.e. the vector in the original image space



End of Topic 6



