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Images as Arrays

• We are used to seeing images/image patches displayed in 2D
• However, they are stored in memory as 1D arrays:
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Images as Vectors

• Of course we can also consider the 1D array as a N-dimensional 
vector, where N is the length of the array, or area of the image:
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Image Patches as Vectors

• Say we are interested in image patches of 
dimensions 1×3 from an image of size 1×9
• How many patches can we extract?
• Imagine sliding 1×3 window
• [50, 255, 30], [255, 30, 50], …, [176, 220, 160]
• Get 7 possible patches – due to “boundary”

• Each of these is a vector in a 3D space!

• In general, a patch of size %×& can be 
thought of as a point in an %& dimensional 
space, where each pixel is a different axis
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Takeaway: Images as Vectors

• We can consider any 2D image or image patch as it’s “flattened” array
• For any image/image patch with N rows and M columns, we can also 

consider this array as a N*M-dimensional vector:
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Template Matching

• Given a “template” patch ! and we want to find 
an image patch "# ∈ % that is most similar to our 
template
• How do we calculate a “similarity” metric?
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Similarity Metric #1: Distance

• Given a “template” patch ! and we want to find an 
image patch "# ∈ % that is most similar to our 
template
• As we have seen, we can consider our image patches 

(and template) to be vectors
• Let’s try using the Euclidean distance between our 

two vectors as our similarity metric :

&# − ! = )# − * +()# − *)

• In some contexts this is known as the root-mean-square 
(RMS) error
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Template Matching using Distance

• Goal: Find image patch !" ∈ $ that is most 
similar to given template %
• Image patch !" ∈ is calculated:

argmin,- ," − %

• The notation argmin/ 0 ! is shorthand for 
“give the value of ! that minimizes 0 ! ”
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Template Matching using Distance

!" − $ = !" − $ &(!" − $)

• Relatively expensive sqrt computation, however:

argmin!/ !" − $ = argmin!/ !" − $ 0

• distance is minimized ósquared distance is 
minimized

argmin!/ !" − $ &(!" − $)
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• Let’s look at a 2D example

• Now our template and image patches are 3×3 patches or 9D vectors

2D Template Matching 
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2D Template Matching 

• Consider the template (or any patch) to have it’s 
origin (0,0) in the patch centre
• Instead of explicitly remapping our template/patches 

into 1D vectors, we can use the write an expression 
based on the 2D arrays
• For each patch at location (r, c) in image I, we 

calculate the 2D sum:

dist(/, 1) = 4
5678

8
4
9678

8
: / + <, 1 + = − ? <, = @

where N is the “radius” of a patch, i.e. 1 for our 3×3 template with indices in 
the range  [-1,1]
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Basic Template Matching Algorithm

dist(&, () = +
,-./

/
+
0-./

/
1 & + 3, ( + 4 − 6 3, 4 7

• Define an “output” image of size equal to the “input” image 1
• Compute dist(&, () for every pixel location &, ( in image 1 where the 

computation is possible 
• i.e. not on the “border” pixels where the template does not “fit”

• Search the image for the location of the lowest distance value – this 
location is the closest match



Distance as Similarity

• Let’s think about what our similarity 
metric means…
• Which of the vectors is closest to the 

red vector?
• Blue – and distance will tell us this

• But what about if the vectors are 
image patches…



Scaled Image Example



Distance as Similarity

• If vectors are image patches, the 
green vector is a scaled version of 
the red vector (i.e. brighter image), 
with some noise!
• Blue is different in some other ways, 

that are probably more perceptible 
to us as Humans!



Distance as Similarity

• We would tend to see images with 
different scaling (brightness) as very 
similar, at least compared to other 
changes
• Our distance-based similarity metric 

cannot distinguish between patches 
that are just scaled versions of the 
template T, and patches that differ in 
other ways!
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Similarity Metric #2: Cross-Correlation

• Goal: Find the image patch !" ∈ $ that is most 
similar to given template %
• Let’s define a new similarity metric:

CC '"(, % = '"( ⋅ %

i.e. the dot-product of the vectors '", %

• This is called the cross-correlation, or more 
intuitively the “sliding dot-product”
• Why is this nicer than distance?
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Cross-Correlation as a Similarity Metric

• Recall the dot product is also defined:

! ⋅ # = ! # cos (

• Depends on the angle between the vectors
• If ( is small, dot product is large
• Maximized when !, # are in the same direction (i.e. ( = 0°)
• Zero when !, # are orthogonal, i.e. ( = 90°

• Also depends on the length of the vectors !, # 90°



Similarity Metric #3: Normalized Cross-Correlation

CC "#$, & = "#$ ⋅ & = "#$ & cos ,
• It is somewhat intuitive that we want image patch 

vectors with similar directions to be considered similar
• But this measure clearly biases towards vectors with 

larger lengths – this doesn’t make much sense
• Instead, let’s normalize the result so it is independent of 

the vector magnitudes…

NCC "#$, & = "#$ ⋅ &
"#$ & 90°



Normalized Cross-Correlation

NCC #$%, ' = #$% ⋅ '
#$% ' = cos -

• This is actually just the cosine of the angle between the 
vectors! (or dot product of unit vectors .#$%, /' )
• Properties:

• Independent of norm of image patches (length of vector)
• = 1.0 (max) when the intensities of #$%, ' are identical (to a 

scale factor)
• = 0.0 (min) when #$%, ' are orthogonal (most dissimilar) 90°
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2D Template Matching Using 
Cross-Correlation
• For each patch at location (r, c) in image I, we 

calculate the 2D sum:

CC(,, .) = 1
2345

5
1
6345

5
7 , + 9, . + : ; 9, :

where N is the “radius” of a patch as before.
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Template Matching: Computational Issues

• Assume a template with ! pixels, and an image 
with " pixels
• For example, if our image is 1000×1000, " = 10'
• If our template is 32×32, ! = 32* = 1024

• For each patch, the CC metric requires 
! multiplications, ! − 1 additions
• Total - "! operations for entire image!

Image 2D Array I /, 1
(" pixels)

34
Template 5
(! pixels)

34 =

/6

/7

5 =

86

⋮

87

Image Patch 3: /, 1
(! pixels)

CC 34<, 5 = 34< ⋅ 5

NCC 34<, 5 = 34< ⋅ 5
34< 5

dist* 34<, 5 = 34 − 5 <(34 − 5)
Similarity Metrics:



Template Matching: Computational Issues

• Total ! "# operations for entire image, where N and M are very large
• Clearly template matching is very expensive!
• What if we could represent patches $%&, ( with only ) ≪ # dimensions
• Would have ! )#

Dimensionality Reduction
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Math Refresher: Basis Vectors

• Vectors are expressed relative to basis
• Typically this is the standard basis, i.e. for the 

Euclidean 2D space, the basis vectors are:

!" = 0, 1 ≡ 0
1 , !( = 1,0 ≡ 1

0

• Any vector we have in this space is uniquely 
represented as a linear combination of the basis 
vectors, e.g.:

) = (3, 3) = 3!" + 3!(

.

/!" = 1
0

!( = 0
1

) = 3
3



Math Refresher: Change of Basis

• We can use a non-standard basis to represent 
any vector
• For example, perhaps we want to represent this 

vector with a new basis !:

"# = 1,1 , '# = (−1,1)

• Notice that in this new basis one of our basis 
vectors is the unit vector +,
• Under our new basis, ,# = 3"# ≡ (3, 0)

0

1

" = 1
1 = +,

' = −1
1

, = 3
3

0

123 = 1
0

24 = 0
1

, = 3
3



Natural Images are not Random



Natural Images

• We would not expect to see the bottom 
image out of our camera! (white noise)
• However, both of these are valid vectors 

in the same !-dimensional image space!
• Natural images have structure
• Even if we considered all possible natural 

images, they would occupy only a fraction 
of the full N-dimensional space
• How can we take advantage of this?



Linear Dimensionality Reduction: Intuition

Case A: pixel intensities are unrelated
• What would we expect our space of image 

patches to look like?
• For simplicity, assume our patches/templates 

are 2-pixels long!
• Image patch vectors should look random, 

uncorrelated, with no discernable relationship 
between pixels
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Linear Dimensionality Reduction: Intuition

Case B: pixel intensities are related
• What would we expect our space of image 

patches to look like?
• Image patch vectors have a trend, are 

correlated, with relationships between pixels
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Linear Dimensionality Reduction: Intuition
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Linear Dimensionality Reduction: Intuition
• What happens if we change basis?

!" =
$"%
$"&

= $"%'( + $"&'*
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Linear Dimensionality Reduction: Intuition

• Idea: When pixel intensities are related, we 
can express a patch in terms of basis vectors 
where only a few of the coordinates are 
significant (i.e. not close to 0)
• This is a nutshell is linear dimensionality 

reduction: remove unneeded dimensionality

• This really depends on the basis we choose!
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How Vector Components Change with Basis

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues


Intermission
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Principle Components

• What we want to find are the principle 
components of the data, i.e. the 
directions in which the data shows the 
most variation
• First we need to know how to change 

basis!
!"!#
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Changing Basis: Matrix Notation
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Changing Basis: Matrix Notation

!" !# ⋯ !% = '" '# ⋯'(
)""
)"#
)"(

)#"
)##
)#(

⋯
)%"
)%#
)%(

* M-dim Patches: 

'"'#
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* 2-dim Patches: 



Changing Basis: Matrix Notation

• Want to choose !",… , !% such that &"' ≈ 0
for * < , ≤ ., i.e.:

/" /0 ⋯ /2 =

!" !0 ⋯!%

&""
⋮
&"5
&"56"
⋮
&"%

&0"
⋮
&05
&056"
⋮
&0%

⋯

&2"
⋮
&25
&256"
⋮
&2%

7

all ≈ 0
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Changing Basis: Matrix Notation

• Assume we find such a basis !",… , !%
• We can approximate the the patches using only 

the first & components of the patch vectors
• We have a &-dimensional approximation!

'" '( ⋯ '* = !" !( ⋯!,

-""
⋮
-",
-",/"
⋮
-"%

-("
⋮
-(,
-(,/"
⋮
-(%

⋯

-*"
⋮
-*,
-*,/"
⋮
-*%



Principle Component Analysis (PCA) 
Algorithm
Given ! image patches of " dimensions:
1) Calculate mean of image patch vectors

#$ = 1
!'$(

2) Subtract the mean from all patches (centre)
)( = $( − #$

3) Create an "×! matrix of all centred patch vectors (arranged as columns of 
matrix)

, = )- ).⋯ )0
4) Find eigenvectors 1-,… ,14 corresponding to the d (where 6 ≪ ") largest 

eigenvalues 8-, … , 84 of the covariance matrix
Σ = ,,:
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Understanding PCA

• This is the algorithm (that you should know), and it’s immensely 
useful – possibly one of the most useful things you can learn in this 
course

• However, we haven’t explained why it works! Or for that matter what 
eigenvectors/eigenvalues are…

• Here we will attempt to gain an understanding what PCA is doing, and 
why it works

• You should take away at least the following: what is the covariance 
matrix, and the SVD of the covariance gives us the 
eigenvectors/values



Principle Component Analysis (PCA): Intuition

• This is all great! We understand we want to 
find a basis of principle components
• But how do we find this basis?
• Let’s look at an example, here (again) are our  

2-dimensional image patches
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Principle Component Analysis (PCA): Intuition

• Let’s look at an example, here (again) are our  
2-dimensional image patches

• We would like to find two orthogonal vectors:
• major direction of the largest data variance
• minor direction of least variance !"

#$%&'(#$")'(



Principle Component Analysis (PCA): Intuition

• Let’s put our computer vision hat back on for a 
minute… 
• Can we find a shape to contain this data that 

would tell us the major and minor axis of 
variation?

• Hint: not a line – line only gives us one 
direction!
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Principle Component Analysis (PCA): Intuition

• Let’s put our computer vision hat back on for a 
minute… 
• Can we find a shape to contain this data that 

would tell us the major and minor axis of 
variation?

• Hint: not a line – line only gives us one 
direction!
• Hint2: what shape has a major and minor axis?

!"

#$%&'(#$")'(



PCA as Ellipse Fitting
• This is similar to modelling our data’s variance using an ellipse!
• Equation of an ellipse:

! − #$ %

&% + ( − #% %

)% = 1
• The centre of the ellipse is simply the mean of data:

,- = 1
./-0

• We can subtract this mean from our data, giving us an ellipse centred 
on the origin:

!%
&% +

(%
)% = 1

-0,-



PCA as Ellipse Fitting
• What are the lengths of our major and minor axis?

!"
#$"

+ &
"

#'"
= 1

• “Spread” i.e. standard deviation of our data in the !, & axes: 
#$, #'

• Recall, the sample variance of a dataset X (where +, is the mean):

#" , = 1
-.(,0 − +,)"

3043

#$#'



PCA as Ellipse Fitting
• What about a non-axis aligned eclipse?

!"
#" +

%"
&" = 1

• In our equation of the ellipse, a, b are the x and y 
components of major/minor axis
• Variance is also only defined in terms of x and y 

components!
)*" +, = 1

-.(+0, − 2+,)"

• In 2D, we must look at more general form of 
variance: covariance
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Covariance
• We define covariance:

cov $, & = 1
)*($, − .$/)(&, − .$1)

• Notice, variance is a special case of covariance
23($) = cov $, $

• In 2D, we have 4 possible covariances, 
represented in the covariance matrix

Σ($, &) = cov $, $ cov $, &
cov &, $ cov &, &

5,65

2728

5,
9:;<=>

9:,?=>

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/


Covariance Matrix
• This is the covariance matrix

Σ(#, %) = cov #, # cov #, %
cov %, # cov %, %

• Note: this matrix is symmetric since 
cov #, % = cov %, #
• If our data is uncorrelated, the covariance 

matrix will be of the form:

Σ(#, %) = +,- 0
0 +/- 01

234567

231867

correlated

0190

+:+;

uncorrelated



Covariance Matrix - Intuition

• The off-diagonal terms of the 
covariance matrix give us an idea 
of the relationship of the data 
across dimensions
• Note that if the off-diagonal 

terms are zero, there is no 
obvious inter-dimension 
relationship!

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/


Ellipsoid Equation
Ellipsoid (N-dim Ellipse) Equation:

! − # $A&'(! − #) = 1

where A&' is an inverse transformation matrix 
(,×,), and !, # are N dimensional (col) vectors
• Here, the Ellipsoid is defined explicitly as a linearly 

transformed (scaled/rotated) unit circle/sphere:

! − # $ (! − #) = ./ 012345

016745

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/

https://datascienceplus.com/understanding-the-covariance-matrix/

8 A&'

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/
https://datascienceplus.com/understanding-the-covariance-matrix/


Covariance as a Transformation Matrix
Ellipsoid (N-dim Ellipse) Equation:

! − # $Σ&'(! − #) = 1
where Σ&' is the inverse covariance matrix (,×,), 
and !, # are N dimensional (col) vectors
• The covariance . is actually a linear transformation

telling us how our data differs from a dataset with 
no correlations
• What we are actually interested in however are the 

principle components/ellipse axes – how do we get 
those from our covariance matrix? /01234

/05634

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/

https://datascienceplus.com/understanding-the-covariance-matrix/

Σ Σ&'

https://www.xarg.org/2018/04/how-to-plot-a-covariance-error-ellipse/
https://datascienceplus.com/understanding-the-covariance-matrix/


Math Review: Eigenvectors/Eigenvalues

• Definition: ! ≠ # is an eigenvector of a matrix $ if
$! = &!

where & is a scalar, called the eigenvalue of !

Geometric Intuition:
• A general transformation may be defined' = $!
• ! is an eigenvector of $ if multiplication 

(transformation) by $ preserves !’s direction
• Vectors in the direction of the axis of rotation are 

unchanged in a transformation…

$!

(

)

!

$!

(

)

!

! is not an eigenvector

! is an eigenvector



Eigenvectors/values and Ellipse

• It turns out the eigenvectors/eigenvalues of our correlation matrix give us 
the direction/size of our ellipse axes!
• Eigenvectors of ! give us the basis (directions) of the ellipse’s major/minor axis
• Eigenvalues give us the size of the ellipse’s major/minor axis

• Assume that we have eigenvectors "#, … , "& such that '# > ') > ⋯ > '&
• "#is the vector pointing in the direction of largest variance
• "&is the vector pointing in the direction of the least variance

'#"#

')")



Calculating Eigenvectors for Symmetric Matrix

• If Σ is a "×" symmetric matrix (like the covariance), then the singular 
value decomposition (SVD) of $: 

Σ = &Λ&(

where & is an "×" matrix of the eigenvectors as columns, and Λ is an 
"×" diagonal matrix with the eigenvalues as the diagonal, i.e.

) = diag ./, … , .2 , & =
| |
4/ 45
| |

⋯
|
42
|

• There are many efficient implementations of SVD, so this is great!
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PCA Application: EigenFaces

• EigenFaces uses PCA to recognize faces!
• Dataset: image patches of faces, dimensions 
250×350 (75000-dimensional vectors)
• '( = ”Mean” Face image
• )*,… , )- (where . < 20): the “eigenfaces”
• Each face patch in the dataset can be 

represented as a linear combination of the 
“eigenfaces”



EigenFaces: Database Creation Algorithm

Given ! face patches "#,… , "& of dimension '=75000:
1) Calculate mean of image patch vectors

(" = 1
!+",

2) Subtract the mean from all patches (centre)
-, = ", − ("

3) Create an '×! matrix of all centred patch vectors (arranged as columns of matrix)
0 = -# -1⋯ -&

4) Find eigenvectors 3#,… , 34 corresponding to the d (where 6 < 15) largest eigenvalues
9#, … , 94 of the correlation matrix 00:

5) Store the eigenvectors 3#,… , 34, mean image (" and vectors in new d-dimensional basis ;, =
<,# <,1 ⋯ <,4



EigenFaces

“Mean” Face

(not so mean!)

Top-6 Eigenvectors



EigenFaces: Representing a Face
• We can represent any face as 

a linear combination of the 
basis vectors.

• Not very flattering, but 
consider this image is 
represented as only 3 
numbers in the database!

• Storage for N faces:
Images: 75000$
EigenFaces: 4 ⋅ 75000 + 3$



EigenFaces: Recognition

Given a query image ! and our EigenFaces database
1. Compute coordinates of ! in the EigenFaces basis, i.e. jth coord:

"#$ = &$'(
2. Find the vector )# in the database that is closest to *#
3. Return face image +# , i.e. the vector in the original image space



End of Topic 6


