2D Images & Curves

Topic 5
Week 4 — Jan. 30t", 2019

Topic 4: 2D Images and Curves

* 2D Image Patches

* Image Gradients

* Edges

* Sobel Filter

* Second-Order Edges
e Canny Edges

* Circle Detection

Images are more than Pixels

* Up until now we have
only looked at pixelwise
operations

* Pixels by themselves are
not overly informative!

 We need context

x (column)

y (row)

2D Image Patch

* An image patch (like an image) is
2D array of pixel intensities

* Pixels have row, column coordinate
* Often origin is at top left (varies)!

* How big is an image patch?
* could be whole image, or single pixel!
* typically small local neighbourhood

Tell me what you see

* On the next slide is an image
* Try to make note of the first thing you really look at...

Street Scene

* Let’s look at just the
brightness of this
image (i.e. no colour)

* What is the first thing
you look at in this
image?

* What pixels are
important?

Street Scene

* Probably one of the
first things you noticed
were the streetcar
wires

* We are sensitive to
these rapid changes
brightness

2D Image Patch

e Define the discrete function:

z = I(x,y)

wherex=1,.., W,y=1,..,Hand z € [0, 1]

We would like to understand:
* How does this function vary?

 How do these intensity variations
relate back to the underlying scene?

x (column)

y (row)

2D Image Patch as Surface

x (column «\0\
() | x\co\o
B
o
=~
N
%

2D Image Patch as Surface

\
. : _ e
* Conceptually our intensity function x\P

z = I(x,y) is a surface!
* In this context intensity is height

* How do we find the slope of the
surface?

x (column)

y (row)

Vector Calculus Refresher

* We learned how to analyze the variation of

(continuous) multivariate functions!
* Assume f(x,y) = zis a 2D function, recall
Vf (gradient of f) is defined:
96\00\\)«\“\
df o
Vf = (f | f)
dx dy
\1(9,23) 5
3

* Vf tells us the direction, and magnitude of
maximum increase at a given point

Topic 4: 2D Images and Curves

* 2D Image Patches

* Image Gradients

* Edges

* Sobel Filter

* Second-Order Edges
e Canny Edges

* Circle Detection

Discrete Gradients

* How do we calculate the partial derivatives of a
discrete function? Let’s look at 1D first:

e Recall the definition of the derivative as the limit:

df fGH+h) - f®

Iz nm h

* One option is to approximate the derivative
using the smallest finite difference h:

df f(x+h)—f(x)
dx h

Finite Differences

* Forward difference 176
W
df flx+h)—f(x) Foctn)
dx h
* Backward difference 60
 eetTTTe L
df f(x)—f(x—h) fle—1
dx h

e Central difference

df N fx+h)—f(x—h) ¢ fGe—h) fG+h)
dx 2h

Discrete Image Gradients

* The gradient gives us two images,
one for each partial derivative

g()~f(x+1;)7)_f(x_1,y)
ox V) 2
%()~f(x,y+1)—f(x,y—1)
0y V) 2

d
ax (x’y)

a/(x'y)

Image Gradients

DO

af
dx

of

Image Gradients

* Would like some measure of gradient for
all components

 Since we have a vector for each pixel, can
also look at the magnitude and direction
of the gradient:

vieni= (G ») +(L)

06xy) = tan~ (5 1,9/ 5 () S

Image Gradients

0 > Of
Vel = () +(2 @)
\
e Square root makes this expensive

e Often instead calculated as:

9 Gl =[5 G| + |5)

* This is generally known as the
Manhattan distance or [; norm

Image Gradients — Magnitude and Angle

Zi 0

Image Gradients — Thresholding Magnitude

14d Vil >t

Another Example — Street Scene

* Let’s look at a patch from a ‘
more typical scene .

Gradient — Street Scene

af
dx

of

Gradient — Street Scene

V1]

Gradient — Street Scene

V1]

Topic 4: 2D Images and Curves

* 2D Image Patches

* Image Gradients

* Edges

* Sobel Filter

* Second-Order Edges
e Canny Edges

* Circle Detection

Edges

 Humans can recognize the content of
this image from these edges

* This should be surprising! We've
removed most of the original content
of the image — 1 bit image from 8 bit!

* Edges are salient —i.e. they contain
lots of information about the scene

* What information are edges
preserving from the scene?

What is an Edge?

* Edges arise from a rapid change or
discontinuity in image intensity

* The edges we find with a gradient filter, arise
from the extrema of the first derivative

Image

f(x)

f(x)

Single Row

f(x)

What is an Edge?

* Edges have a variety of causes!

e Each type gives us different
information about the scene

e Difficult to distinguish edges
from different causes

Ao~

© Steve Seitz

surface normal discontinuity

depth discontinuity

surface color discontinuity

ilumination discontinuity

Gradient and Noise

* In reality, our image is going to
be a noisy sampling of the
underlying function

e Gradient is very sensitive to this!
* Can find the edge in gradient? -

© Steve Seitz

Gradient and Noise

* Let’s first try to approximate the
underlying function better

e Recall from last week:

* Approximate each point by a
weighted function of its
neighbouring points (e.g. Gaussian) —

* Apply as sliding window across
function (this is called convolution
“«”, as we will see later)

© Steve Seitz

Gradient and Noise - Smoothing

* Averaging avoids random noise

* Gives us a smoother
approximation of the function

* Our gradient of the smoothed
function gives us nicer edges!

* How do we do this smoothing in
practice?

© Steve Seitz

Topic 4: 2D Images and Curves

* 2D Image Patches

* Image Gradients

* Edges

* Sobel Filter

* Second-Order Edges
e Canny Edges

* Circle Detection

Smoothing/Averaging Filter

e Let’s use a simple centre-weighted
average:

fe-D+2f)+f(x+1)
B 4

g(x)

* We apply this to every pixel, using the a
sliding window of 3 pixels

* We can represent this as operation for
each pixel location x:

fx—1)
[1 2 1]f f(x)
fx+1)] © steve itz

— - -
v~ v~

filter sliding window centred at x

IS,

g(x) =

.

Convolutional Filters

* So the smoothing operation is:

1
g(x) =z[1 2 1]

f(x—1)
f(x)
f(x+1)]

* Similarly, the gradient is:

1
ffly=--1 0 1]

- —y
Y

filter sliding window centred at x

fx—1)]
f(x)

fx+1)

~

© Steve Seitz

Image Filters

* Many operations for images can be represented as linear filters
* Filters are a linear combination of the neighbourhood pixels

* In general, a 3x3 filter centred on the image at I(x, y) will calculate:

* *operator is convolution not matrix multiplication

ao a1 az XO x1 .XZ
A3 |Ay4 |A5 | * |X3 |Xg |Xg »
de |A7 |Ag X6 | X7 |Xg

Yy = 2 aA;Xg—j

Vs

Image Filters

* Creates a new image based on linear combination of local neighbourhood

* % is the convolution operator not matrix multiplication

000 1123

Identity O[1(0| x [4|5]|6 » 5
000 71819
000 1123

Horizontal Shift 1100 x | 4]5]6 » 6
000 71819

Smoothing Filter + Gradient

We want to calculate % * (g * f(x,y)),i.e.the gradient of the smoothed image

In 2D for a single direction (e.g. x) we would apply our two filters:

5—1[1 0 1] —1[1 2 1]
Sx 27 ’)
* |t turns out that the convolution operator is associative however!
we—*(g flx,y)) = (* f(x,y)
1 -1 0 1
-1 0 1] 8 -2 0 2
-1 0 1

| - -
"

Sobel Filter (x direction)

Sobel Filter for Edges

1[-1 0 1

Sobel, = 3 -2 0 2

-1 0 1
1[-1 -2 -1
Sobely=§ 0 0 0
1 2 1

* Sobel filter is the standard image gradient filter
* There are many others however!
 Typically the normalization (1/8) term is ignored

Intermission

Topic 4: 2D Images and Curves

* 2D Image Patches

* Image Gradients

* Edges

* Sobel Filter

* Second-Order Edges
e Canny Edges

* Circle Detection

Issues with Gradient Edges

e Using gradient filters to find edges is not ideal:
* Edge from gradient magnitude is “thick”, ideally as localized to one pixel
* This is because we threshold the gradient magnitude
e Can possibly include several pixels around the true edge location

Image

f(x) f'(x)

f(x)

(single image row)

Finding Better Edges

f(x)
* What we are interested in finding is a single
edge, at the exact extrema of f'(x)
* This is actually where zero crossing of the |
second derivative f''(x) is! f)
* Using the second derivative, we can

potentially localize edges better than with
the gradient

fr ()

Going back to 2D

* Recall the gradient is defined:

= (3e'ay)

* In 2D the second derivative is called the Laplacian (V?):

0 d71 [0f O 0%f 072
ox dyl lox Jdyl 0x? 0y?

Discrete 2" Order Derivative

* Just as with the first derivative, there are many finite difference
approximations of the second derivative

* When based on the central difference, the approximation for f(x) :

dz
o~ e+ D= 2f() + fx— D

dx?

Derivation of finite differences for 2" order derivatives:
https://math.stackexchange.com/questions/210264/second-derivative-formula-derivation
Derivation of finite differences for 2" order derivatives in terms of Taylor series:
https://geometrictools.com/Documentation/FiniteDifferences.pdf

Discrete Laplacian — 2D

dZ
#zf(x+1,y)—2f(x;3’)+f(x_1’3’)
o _O°f O°f
V' =522 T 50

* Therefore, we can approximate the Laplacian with:

vzf zf(x_l_ 11y)+f(ny+ 1) +f(x_ 1;y) +f(x!y_ 1) _4f(x'y)

Discrete Laplacian Filter

Vif=fx+ 1L+, y+ D+ fx—1,y)+ fl,y—1) —4f(x,y)
* Let’s represent this in convolutional filter form:

0 0 0] [0 1 O
Vif ~ |1 =2

p—
|
-]
|
N
S

0 1 0
=[{1 -4 1
0 1 0

Laplacian of Gaussian

 Just as with the gradient, the Laplacian is highly sensitive to noise
* Typically smooth the image before applying the Laplacian with Gaussian
* Unlike with gradient we do not get direction of edge!

Image Smoothed image Laplacian zero-crossings

Laplacian of Gaussian

* This is often called the Laplacian of Gaussian
* Using Gaussian filters of different o results in very different edges
* In fact, we see edges of different scales — this will be important later!

o =3 =9 g=27 o =49

Difference of Gaussians

* The Laplacian of Gaussians is well approximated by simply subtracting
two Gaussian functions

e This is called “Difference of Gaussians”

Difference of Gaussians

* Typically use 0, = 1.6 g;to approximate LoG
* Notice again that we get edges from different scales with increasing o

0-1:3,0-2:5 0-1:9,0-2:15 0-1:210-2:33 0-1:490-2:75

Difference of Gaussians

e Gaussian filter is separable, can compute it with 1 x k + k x 1 filters:

m m ‘
C

* Actually Laplacian of Gaussian also has separable representation —
but requires 4 filters instead of 2

* The Laplacian of Gaussian is relatively expensive to compute

Topic 4: 2D Images and Curves

* 2D Image Patches

* Image Gradients

* Edges

* Sobel Filter

* Second-Order Edges
* Canny Edges

* Circle Detection

|deal Edge Detector

* We are still far from the ideal edge detector...

* Good Detection:
* Want to minimize false edges, i.e. false positives
* Want to minimize true edges missed, i.e. false
negatives
* Good Localization
* Want to find edges as close to true edge location as
possible
* Single Response

* Want to find only one pixel for any single true edge
location

Ideal Edges

poor localization

T multiple

/ response

false positive

/

false negative
— Poor Edges

Derived from work of L. Fei-Fei

Canny Edge Detector

* First introduced by John Canny in his 1983 M.Sc. Thesis
e Still the most widely used edge detector today!

e Outline:
» Step 1: Filter image with the derivative of Gaussian
* Step 2: Calculate magnitude and orientation of resulting gradient
» Step 4: Thin out thick edges (“non-maxima suppression”)
* Step 3: Hysteresis thresholding:
* Use initial high threshold to find beginning of edge curve
* Find remaining pixels belonging to edge curve with second, lower threshold

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny detector/canny detector.html

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

Canny Step 1 — Derivative of Gaussian

* Almost the exact same as Sobel, except we use Gaussian to smooth
* Recall: Sobel uses a simple weighted average instead

5 —

Canny Step 2 — Calculate Magnitude/Direction

 Calculate gradient (central difference) magnitude and direction
* Direction is typically discretized to 4 possible angles (0, 45, 90, 135)

V1l 6

Canny Step 3 — Non-Maxima Suppression

* Remember we only want a single pixel
response for each edge!

* “Non-Maxima Suppression”

* Step 1: Compare the gradient magnitude along the
non-zero pixels in the edge mask pixels in the +/- |Vf|
gradient direction (i.e. perpendicular to the edge)

» Step 2: Keep largest gradient magnitude found, .-

zero out others %

Canny Step 4 — Hysteresis

* Uses two thresholds — upper and lower

* Canny recommended a upper:lower ratio
between 2:1 and 3:1

* Find initial edge points using high threshold

* Use lower threshold to find other edge
points that agree with the edge curve

Weaker edges found from lower |V f| threshold

N /

Strong edges found from higher |V f|threshold

Canny Edges

Topic 4: 2D Images and Curves

* 2D Image Patches

* Image Gradients

* Edges

* Sobel Filter

* Second-Order Edges
e Canny Edges

* Circle Detection

Putting it all together!

* We create a startup (it’s the thing to do)

* Qur pitch is a new app: couchchange™
* Users upload phone images of their couch
* We return an image highlighting where the coins is

* How do we do this?
* Hint: you’ve actually seen everything you need already

Finding Circles

* Assumptions:
* Images of a planar surface with coins

 Surface is perpendicular to the camera
 (i.e. quarters look like circles, not ellipses)

e Step 1: Find Canny edges
* This will give us the edges for the object outline
* We will also get lots of extraneous edges however!

 Step 2: Fit a model of a circle to the edge points
* We need a robust method to do this...

RANSAC Circle Detection

* We want to fit a model of a circle to our edge points
* Circle centred at (a, b) of radius r:

x—a)*+(y—-b)?=r’

* Use a set of randomly sampled points to give an initial
estimate of the model

* Need a minimum of 3 points to find parameters for a circle

RANSAC Circle Detection — Initial Circle

* Calculate an initial estimate of our circle parameters using our 3 initial points - many
approaches to this (see reference)!

* Use our circle equations, gives us 3 equations, 3 unknowns:

(x0,Y0)
(xo —a)*> + (yo — b)* =1r?
(xy —a)?> + (y; — b)*> =r?
(x; —a)?* + (y, — b)* =17

However it looks like a quadratic system of equations! This is simpler than it seems, if we write it as:

(xo — a)*> + (yo — b)* = (x; — a)* + (y, — b)?
(x1 —a)? + (y1 = b)* = (xz — a)* + (y, — b)?

Nicely the quadratic terms a?, b%cancel out, and we are left with two simple (but very lengthy) equations
for calculating (a, b)!

We can then use our circle equation to calculate r:

r =G — 2 + (g — b)?

https://gc.edu.hk/math/Advanced%20Level/circle%20given%203%20points.htm

https://qc.edu.hk/math/Advanced%20Level/circle%20given%203%20points.htm

RANSAC Circle Detection — Random Sample

* Checking for consensus is expensive
* We need to ensure our initial points are reasonable
* The initial points should not be too close — why?

* The initial points should not be co-linear — why?

RANSAC Circle Detection — Consensus

* We now have a circle centred at (a, b) of radius r:
(x—a)*+ @y —b)*=r?

* Inliers to our proposed model should be within a certain
distance threshold of the circle’s circumference:

\/(xinlier _ a)z + (:Vinlier _ b)z _ Tz < dinlier

* All other points are deemed outliers!

» Re-fit our model to our new complete set of inliers, to get a
better estimate of the parameters

RANSAC Circle Detection — Consensus

* Count # of inlier edges we have for our re-fit model
* The larger the # of edges, the better the model!

* Decide if we have a good circle — if so, save it
* Set threshold relative to circumference of circle, otherwise
we bias towards large circles!

e Continue looking for better models until we reach
iteration limit

RANSAC Circle Detection — Multiple Circles

Hough Transform

* Another common method of finding circles is the Hough transform

* Instead of fitting a model to a set of initial points, considers all possible
models for each point

* We do this by voting in the parameter space
* For example, for a circle of known radius r:

(x—a)*+(y —b)* =r°

* Our parameter space is the 2D space of all possible centres (a, b)

Hough Transform

* We can also represent a circle with ¥ b
the parameterization:

X =a-+rcosf
y=b+1rsinf

where 6 € [0, 2]

* Each edge pixel in the image space
(x,y) corresponds to many possible
circles, i.e. parameters (a, b)

© Harvey Rhody, RIT

Hough Transform

* Each edge pixel in the image space
(x,y) votes for all possible circle
centres (a, b) in parameter space that
could have caused it

* The parameter space accumulates
votes for all edge points

* Circle parameters that match the most
edge pixels gain the most votes!

* Peaks of the Hough Transform are
chosen as candidate circles

From Wikipedia

Hough Transtorm

* Disadvantages:
* Not as robust to outliers/noise

* Memory used to store discretized
parameter space is considerable

* Does not scale to models with many
parameters

Overview of Topic 5

* Today we learned an early computer vision pipeline:
* Given raw image input
* Find salient local features (e.g. edges)
 Match a model (encoding our assumptions) to our extracted features

* We went from a raw image to some understanding of the image

End of Topic 5

