
2D Images & Curves
Topic 5

Week 4 – Jan. 30th, 2019

1

Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection

2

Images are more than Pixels

• Up until now we have
only looked at pixelwise
operations
• Pixels by themselves are

not overly informative!
• We need context

2D Image Patch
! (column)

"(
ro

w
)

• An image patch (like an image) is
2D array of pixel intensities
• Pixels have row, column coordinate
• Often origin is at top left (varies)!
• How big is an image patch?
• could be whole image, or single pixel!
• typically small local neighbourhood

Tell me what you see

• On the next slide is an image
• Try to make note of the first thing you really look at…

Street Scene

• Let’s look at just the
brightness of this
image (i.e. no colour)
• What is the first thing

you look at in this
image?
• What pixels are

important?

Street Scene

• Probably one of the
first things you noticed
were the streetcar
wires
• We are sensitive to

these rapid changes
brightness

2D Image Patch
! (column)

"(
ro

w
)

• Define the discrete function:

= % &, (

where x = 1,… ,,, y = 1,… , H and / ∈ [0, 1]

We would like to understand:
• How does this function vary?
• How do these intensity variations

relate back to the underlying scene?

2D Image Patch as Surface
! (column)

"(
ro
w
) ! (col

umn
)

" (row)

(
in
te
ns
ity
)

2D Image Patch as Surface

! (column)

" (row)

• Conceptually our intensity function
z = I x, y is a surface!
• In this context intensity is height

• How do we find the slope of the
surface?

Vector Calculus Refresher

• We learned how to analyze the variation of
(continuous) multivariate functions!
• Assume ! ", $ = & is a 2D function, recall
'! (gradient of !) is defined:

'! = (!
(" ,

(!
($

• '! tells us the direction, and magnitude of
maximum increase at a given point

" (column)

$ (row)

& (
in

te
ns

ity
)

I 9, 23

" (column)

$(
ro

w
)

I 9, 23

Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection

13

Discrete Gradients

• How do we calculate the partial derivatives of a
discrete function? Let’s look at 1D first:
• Recall the definition of the derivative as the limit:

!"
!# = lim(→*

" # + ℎ − "(#)
ℎ

• One option is to approximate the derivative
using the smallest finite difference h:

!"
!# ≈

" # + ℎ − " #
ℎ

" #

" # + ℎ

Finite Differences

• Forward difference

!"
!# ≈

" # + ℎ − " #
ℎ

• Backward difference

!"
!# ≈

" # − " # − ℎ
ℎ

• Central difference

!"
!# ≈

" # + ℎ − " # − ℎ
2ℎ

" #

" # + ℎ

" #

" # − ℎ

" # + ℎ" # − ℎ

Discrete Image Gradients

• The gradient gives us two images,
one for each partial derivative

!"
!# (#, &) ≈

" # + 1, & − " # − 1, &
2

!"
!& #, & ≈ " #, & + 1 − " #, & − 1

2

!"
!# (#, &)

!"
!& (#, &)

Image Gradients

!"
!#

!"
!$

Image Gradients

• Would like some measure of gradient for
all components
• Since we have a vector for each pixel, can

also look at the magnitude and direction
of the gradient:

|"#(%, ')| = *#
*% (%, ')

+
+ *#

*' (%, ')
+

θ(x, y) = tan34 *#
*' (%, ')/

*#
*% (%, ')

|6#|

θ

Image Gradients

|"# $, & |' =
)#
)$ ($, &)

'
+)#

)& ($, &)
'

• Square root makes this expensive
• Often instead calculated as:

|"# $, & |- =
)#
)$ $, & +)#

)& ($, &)

• This is generally known as the
Manhattan distance or .- norm

|/#|

θ

Image Gradients – Magnitude and Angle

|"#| θ

Image Gradients – Thresholding Magnitude

|"#| |"#| > %

Another Example – Street Scene

!

• Let’s look at a patch from a
more typical scene

Gradient – Street Scene

!"
!#

!"
!$

Gradient – Street Scene

|"#| $

Gradient – Street Scene

|"#| |"#| > %

Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection

26

Edges

• Humans can recognize the content of
this image from these edges
• This should be surprising! We’ve

removed most of the original content
of the image – 1 bit image from 8 bit!
• Edges are salient – i.e. they contain

lots of information about the scene
• What information are edges

preserving from the scene?

What is an Edge?
• Edges arise from a rapid change or

discontinuity in image intensity
• The edges we find with a gradient filter, arise

from the extrema of the first derivative

Single Row
!(#)

Image

!(#)

!′(#)

What is an Edge?

• Edges have a variety of causes!
• Each type gives us different

information about the scene
• Difficult to distinguish edges

from different causes

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

© Steve Seitz

Gradient and Noise

• In reality, our image is going to
be a noisy sampling of the
underlying function

• Gradient is very sensitive to this!
• Can find the edge in gradient? à

© Steve Seitz

Gradient and Noise

• Let’s first try to approximate the
underlying function better
• Recall from last week:
• Approximate each point by a

weighted function of its
neighbouring points (e.g. Gaussian)
• Apply as sliding window across

function (this is called convolution
“∗”, as we will see later)

© Steve Seitz

Gradient and Noise - Smoothing

• Averaging avoids random noise
• Gives us a smoother

approximation of the function
• Our gradient of the smoothed

function gives us nicer edges!
• How do we do this smoothing in

practice?

© Steve Seitz

Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection

33

Smoothing/Averaging Filter

• Let’s use a simple centre-weighted
average:

! " = $ " − 1 + 2$ " + $ " + 1
4

• We apply this to every pixel, using the a
sliding window of 3 pixels

• We can represent this as operation for
each pixel location ":

! " = 1
4 1 2 1

$(" − 1)
$(")

$(" + 1) © Steve Seitz

filter sliding window centred at "

Convolutional Filters

• So the smoothing operation is:

! " = 1
4 1 2 1

'(" − 1)
'(")

'(" + 1)
• Similarly, the gradient is:

'′ " = 1
2 −1 0 1

'(" − 1)
'(")

'(" + 1) © Steve Seitz

sliding window centred at "filter

Image Filters
• Many operations for images can be represented as linear filters
• Filters are a linear combination of the neighbourhood pixels
• In general, a 3x3 filter centred on the image at ! ", $ will calculate:
• *operator is convolution not matrix multiplication

"%"&"'
"(")"*
"+","-

.%.&.'

.(.).*

.+.,.-
∗ $)

$ =1.2"+32

5

Image Filters

• Creates a new image based on linear combination of local neighbourhood
• ∗ is the convolution operator not matrix multiplication

321
654
987

000
010
000

∗Identity

6
321
654
987

000
001
000

∗Horizontal Shift

Smoothing Filter + Gradient

• We want to calculate !!" ∗ $ ∗ %(',)) , i.e. the gradient of the smoothed image
• In 2D for a single direction (e.g. x) we would apply our two filters:

+
+' =

1
2 −1 0 1 , $ = 1

4 1 2 1

• It turns out that the convolution operator is associative however!
• i.e. !!" ∗ $ ∗ % ',) ≡ 3

34 ∗ 5 ∗ % ',)

+
+' ∗ $ =

1
2
1
2
1
1
4 −1 0 1 = 1

8
−7 8 7
−9 8 9
−7 8 7

Sobel Filter (x direction)

Sobel Filter for Edges

!"#$%& =
1
8
−1 0 1
−2 0 2
−1 0 1

!"#$%- =
1
8
−1 −2 −1
0 0 0
1 2 1

• Sobel filter is the standard image gradient filter
• There are many others however!
• Typically the normalization (1/8) term is ignored

Intermission

Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection

41

Issues with Gradient Edges

• Using gradient filters to find edges is not ideal:
• Edge from gradient magnitude is “thick”, ideally as localized to one pixel
• This is because we threshold the gradient magnitude
• Can possibly include several pixels around the true edge location

! "
(single image row)

Image
!(") !′(")

|!& " | >)

Finding Better Edges
• What we are interested in finding is a single

edge, at the exact extrema of !′($)
• This is actually where zero crossing of the

second derivative !′′($) is!
• Using the second derivative, we can

potentially localize edges better than with
the gradient

!($)

!′($)

!′′($)

Going back to 2D

• Recall the gradient is defined:

!" = $"
$% ,

$"
$'

• In 2D the second derivative is called the Laplacian ∇) :

∇)" = ∇ ⋅ ∇" = $
$%

$
$' ⋅ $"$%

$"
$' = $)"

$%) +
$)"
$')

Discrete 2nd Order Derivative

• Just as with the first derivative, there are many finite difference
approximations of the second derivative
• When based on the central difference, the approximation for ! " :

#$!
#"$ ≈ ! " + 1 − 2! " + ! " − 1

Derivation of finite differences for 2nd order derivatives:
https://math.stackexchange.com/questions/210264/second-derivative-formula-derivation
Derivation of finite differences for 2nd order derivatives in terms of Taylor series:
https://geometrictools.com/Documentation/FiniteDifferences.pdf

Discrete Laplacian – 2D

!"#
!$" ≈ # $ + 1,) − 2# $,) + # $ − 1,)

∇"# = ."#
.$" +

."#

.)"

• Therefore, we can approximate the Laplacian with:

∇"# ≈ # $ + 1,) +# $,) + 1 + # $ − 1,) + # $,) − 1 − 4# $,)

Discrete Laplacian Filter

∇"# ≈ # % + 1,) +# %,) + 1 + # % − 1,) + # %,) − 1 − 4# %,)
• Let’s represent this in convolutional filter form:

∇"# ≈
0 0 0
1 −2 1
0 0 0

+
0 1 0
0 −2 0
0 1 0

=
0 1 0
1 −4 1
0 1 0

Laplacian of Gaussian
• Just as with the gradient, the Laplacian is highly sensitive to noise
• Typically smooth the image before applying the Laplacian with Gaussian
• Unlike with gradient we do not get direction of edge!

Image Smoothed image Laplacian zero-crossings

Laplacian of Gaussian

• This is often called the Laplacian of Gaussian
• Using Gaussian filters of different ! results in very different edges
• In fact, we see edges of different scales – this will be important later!

! = 3 ! = 9 ! = 27 ! = 49

Difference of Gaussians
• The Laplacian of Gaussians is well approximated by simply subtracting

two Gaussian functions
• This is called “Difference of Gaussians”

Difference of Gaussians

!" = 3, !& = 5 !" = 9, !& = 15

• Typically use !& ≈ 1.6 !"to approximate LoG
• Notice again that we get edges from different scales with increasing !

!" = 21 !& = 33 !" = 49 !& = 75

Difference of Gaussians

• Gaussian filter is separable, can compute it with 1 x k + k x 1 filters:

• Actually Laplacian of Gaussian also has separable representation –
but requires 4 filters instead of 2
• The Laplacian of Gaussian is relatively expensive to compute

Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection

53

Ideal Edge Detector

• We are still far from the ideal edge detector…

• Good Detection:
• Want to minimize false edges, i.e. false positives

• Want to minimize true edges missed, i.e. false
negatives

• Good Localization
• Want to find edges as close to true edge location as

possible

• Single Response
• Want to find only one pixel for any single true edge

location

Ideal Edges

Poor Edges

poor localization

false positive

false negative

Derived from work of L. Fei-Fei

multiple

response

Canny Edge Detector

• First introduced by John Canny in his 1983 M.Sc. Thesis
• Still the most widely used edge detector today!

• Outline:
• Step 1: Filter image with the derivative of Gaussian
• Step 2: Calculate magnitude and orientation of resulting gradient
• Step 4: Thin out thick edges (“non-maxima suppression”)
• Step 3: Hysteresis thresholding:

• Use initial high threshold to find beginning of edge curve
• Find remaining pixels belonging to edge curve with second, lower threshold

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

Canny Step 1 – Derivative of Gaussian

• Almost the exact same as Sobel, except we use Gaussian to smooth
• Recall: Sobel uses a simple weighted average instead

∗

Canny Step 2 – Calculate Magnitude/Direction

• Calculate gradient (central difference) magnitude and direction
• Direction is typically discretized to 4 possible angles (0, 45, 90, 135)

|"#| θ

Canny Step 3 – Non-Maxima Suppression

• Remember we only want a single pixel
response for each edge!
• “Non-Maxima Suppression”
• Step 1: Compare the gradient magnitude along the

non-zero pixels in the edge mask pixels in the +/-
gradient direction (i.e. perpendicular to the edge)
• Step 2: Keep largest gradient magnitude found,

zero out others

|"#|

θ

Canny Step 4 – Hysteresis

• Uses two thresholds – upper and lower
• Canny recommended a upper:lower ratio

between 2:1 and 3:1
• Find initial edge points using high threshold
• Use lower threshold to find other edge

points that agree with the edge curve

Strong edges found from higher |"#|threshold

Weaker edges found from lower |"#| threshold

Canny Edges

Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection

61

Putting it all together!

• We create a startup (it’s the thing to do)
• Our pitch is a new app: couchchange™
• Users upload phone images of their couch
• We return an image highlighting where the coins is

• How do we do this?
• Hint: you’ve actually seen everything you need already

Finding Circles

• Assumptions:
• Images of a planar surface with coins
• Surface is perpendicular to the camera

• (i.e. quarters look like circles, not ellipses)

• Step 1: Find Canny edges
• This will give us the edges for the object outline
• We will also get lots of extraneous edges however!

• Step 2: Fit a model of a circle to the edge points
• We need a robust method to do this…

RANSAC Circle Detection

• We want to fit a model of a circle to our edge points
• Circle centred at !, # of radius $:

% − ! ' +) − # ' = $'

• Use a set of randomly sampled points to give an initial
estimate of the model
• Need a minimum of 3 points to find parameters for a circle

RANSAC Circle Detection – Initial Circle
• Calculate an initial estimate of our circle parameters using our 3 initial points - many

approaches to this (see reference)!
• Use our circle equations, gives us 3 equations, 3 unknowns:

!" − $ % + '" − (% = *%
!+ − $ % + '+ − (% = *%
!% − $ % + '% − (% = *%

However it looks like a quadratic system of equations! This is simpler than it seems, if we write it as:

!" − $ % + '" − (% = !+ − $ % + '+ − (%
!+ − $ % + '+ − (% = !% − $ % + '% − (%

Nicely the quadratic terms $%, (%cancel out, and we are left with two simple (but very lengthy) equations
for calculating $, (!
We can then use our circle equation to calculate r:

* = !" − $ % + '" − (%

https://qc.edu.hk/math/Advanced%20Level/circle%20given%203%20points.htm

*
*

*$, (

(!", '")
(!+, '+)

(!%, '%)

https://qc.edu.hk/math/Advanced%20Level/circle%20given%203%20points.htm

RANSAC Circle Detection – Random Sample

• Checking for consensus is expensive
• We need to ensure our initial points are reasonable
• The initial points should not be too close – why?
• The initial points should not be co-linear – why?

RANSAC Circle Detection – Consensus

• We now have a circle centred at !, # of radius $:

% − ! ' +) − # ' = $'

• Inliers to our proposed model should be within a certain
distance threshold of the circle’s circumference:

%+,-+./ − ! ' +)+,-+./ − # ' − $' ≤ 1234256

• All other points are deemed outliers!
• Re-fit our model to our new complete set of inliers, to get a

better estimate of the parameters

RANSAC Circle Detection – Consensus

• Count # of inlier edges we have for our re-fit model
• The larger the # of edges, the better the model!
• Decide if we have a good circle – if so, save it

• Set threshold relative to circumference of circle, otherwise
we bias towards large circles!

• Continue looking for better models until we reach
iteration limit

RANSAC Circle Detection – Multiple Circles

Hough Transform

• Another common method of finding circles is the Hough transform
• Instead of fitting a model to a set of initial points, considers all possible

models for each point
• We do this by voting in the parameter space
• For example, for a circle of known radius r:

! − # $ + & − ' $ =)$

• Our parameter space is the 2D space of all possible centres (+, -)

Hough Transform

• We can also represent a circle with
the parameterization:

! = # + % cos)
* = + + % sin)

where) ∈ [0, 23]
• Each edge pixel in the image space
(x, *) corresponds to many possible
circles, i.e. parameters (#, +)

© Harvey Rhody, RIT

!

*

#

+

Hough Transform

• Each edge pixel in the image space
(x, $) votes for all possible circle
centres (&, ') in parameter space that
could have caused it
• The parameter space accumulates

votes for all edge points
• Circle parameters that match the most

edge pixels gain the most votes!
• Peaks of the Hough Transform are

chosen as candidate circles

From Wikipedia

Hough Transform

• Disadvantages:
• Not as robust to outliers/noise
• Memory used to store discretized

parameter space is considerable
• Does not scale to models with many

parameters

Overview of Topic 5

• Today we learned an early computer vision pipeline:
• Given raw image input
• Find salient local features (e.g. edges)
• Match a model (encoding our assumptions) to our extracted features

• We went from a raw image to some understanding of the image

End of Topic 5

