2D Images & Curves

Topic 5

Week 4 – Jan. 30th, 2019
Topic 4: 2D Images and Curves

- 2D Image Patches
- Image Gradients
- Edges
- Sobel Filter
- Second-Order Edges
- Canny Edges
- Circle Detection
Images are more than Pixels

• Up until now we have only looked at pixelwise operations
• Pixels by themselves are not overly informative!
• We need context
2D Image Patch

• An image patch (like an image) is 2D array of pixel intensities
• Pixels have row, column coordinate
• Often origin is at top left (varies)!
• How big is an image patch?
 • could be whole image, or single pixel!
 • typically small local neighbourhood
Tell me what you see

• On the next slide is an image
• Try to make note of the first thing you really look at...
Street Scene

• Let’s look at just the brightness of this image (i.e. no colour)

• What is the first thing you look at in this image?

• What pixels are important?
Street Scene

- Probably one of the first things you noticed were the streetcar wires.
- We are sensitive to these rapid changes in brightness.
2D Image Patch

• Define the discrete function:

\[z = I(x, y) \]

where \(x = 1, \ldots, W, y = 1, \ldots, H \) and \(z \in [0, 1] \)

We would like to understand:

• How does this function vary?

• How do these intensity variations relate back to the underlying scene?
2D Image Patch as Surface

- x (column)
- y (row)

- z (intensity)
2D Image Patch as Surface

• Conceptually our intensity function \(z = I(x, y) \) is a surface!
• In this context intensity is height

• How do we find the slope of the surface?
Vector Calculus Refresher

- We learned how to analyze the variation of (continuous) multivariate functions!
- Assume $f(x, y) = z$ is a 2D function, recall ∇f (gradient of f) is defined:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)$$

- ∇f tells us the direction, and magnitude of maximum increase at a given point
Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection
Discrete Gradients

• How do we calculate the partial derivatives of a discrete function? Let’s look at 1D first:

• Recall the definition of the derivative as the limit:

\[
\frac{df}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

• One option is to approximate the derivative using the smallest finite difference \(h \):

\[
\frac{df}{dx} \approx \frac{f(x + h) - f(x)}{h}
\]
Finite Differences

• Forward difference

\[
\frac{df}{dx} \approx \frac{f(x + h) - f(x)}{h}
\]

• Backward difference

\[
\frac{df}{dx} \approx \frac{f(x) - f(x + h)}{h}
\]

• Central difference

\[
\frac{df}{dx} \approx \frac{f(x + h) - f(x - h)}{2h}
\]
Discrete Image Gradients

• The gradient gives us two images, one for each partial derivative

\[
\frac{\partial f}{\partial x} (x, y) \approx \frac{f(x + 1, y) - f(x - 1, y)}{2}
\]

\[
\frac{\partial f}{\partial y} (x, y) \approx \frac{f(x, y + 1) - f(x, y - 1)}{2}
\]
Image Gradients

\[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \]
Image Gradients

- Would like some measure of gradient for all components
- Since we have a vector for each pixel, can also look at the magnitude and direction of the gradient:

\[
|\nabla f(x, y)| = \sqrt{\left(\frac{\partial f}{\partial x}(x, y)\right)^2 + \left(\frac{\partial f}{\partial y}(x, y)\right)^2}
\]

\[
\theta(x, y) = \tan^{-1}\left(\frac{\frac{\partial f}{\partial y}(x, y)}{\frac{\partial f}{\partial x}(x, y)}\right)
\]
Image Gradients

\[|\nabla f(x, y)|_2 = \sqrt{\left(\frac{\partial f}{\partial x}(x, y)\right)^2 + \left(\frac{\partial f}{\partial y}(x, y)\right)^2} \]

- Square root makes this expensive
- Often instead calculated as:

\[|\nabla f(x, y)|_1 = \left|\frac{\partial f}{\partial x}(x, y)\right| + \left|\frac{\partial f}{\partial y}(x, y)\right| \]

- This is generally known as the Manhattan distance or \(l_1 \) norm
Image Gradients – Magnitude and Angle

$|\nabla f|$ θ
Image Gradients – Thresholding Magnitude

$|\nabla f|$

$|\nabla f| > t$
Another Example – Street Scene

• Let’s look at a patch from a more typical scene
Gradient – Street Scene
Gradient – Street Scene

$|\nabla f| \quad \theta$
Gradient – Street Scene

$|\nabla f|$

$|\nabla f| > t$
Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• **Edges**
 • Sobel Filter
 • Second-Order Edges
 • Canny Edges
 • Circle Detection
Edges

• Humans can recognize the content of this image from these edges

• This should be surprising! We’ve removed most of the original content of the image – 1 bit image from 8 bit!

• Edges are **salient** – i.e. they contain lots of information about the scene

• What information are edges preserving from the scene?
What is an Edge?

• Edges arise from a rapid change or discontinuity in image intensity
• The edges we find with a gradient filter, arise from the extrema of the first derivative
What is an Edge?

• Edges have a variety of causes!
• Each type gives us different information about the scene
• Difficult to distinguish edges from different causes
Gradient and Noise

- In reality, our image is going to be a noisy sampling of the underlying function.
 - Gradient is very sensitive to this!
 - Can find the edge in gradient? →

© Steve Seitz
Gradient and Noise

• Let’s first try to approximate the underlying function better
• Recall from last week:
 • Approximate each point by a weighted function of its neighbouring points (e.g. Gaussian)
 • Apply as sliding window across function (this is called convolution “∗”, as we will see later)
Gradient and Noise - Smoothing

- Averaging avoids random noise
- Gives us a smoother approximation of the function
- Our gradient of the smoothed function gives us nicer edges!
- How do we do this smoothing in practice?
Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• **Sobel Filter**
• Second-Order Edges
• Canny Edges
• Circle Detection
Smoothing/Averaging Filter

• Let’s use a simple centre-weighted average:

\[g(x) = \frac{f(x - 1) + 2f(x) + f(x + 1)}{4} \]

• We apply this to every pixel, using the a sliding window of 3 pixels

• We can represent this as operation for each pixel location \(x \):

\[g(x) = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} f(x - 1) \\ f(x) \\ f(x + 1) \end{bmatrix} \]

\(\text{filter} \quad \text{sliding window centred at} \quad x \)
Convolutional Filters

• So the smoothing operation is:

\[g(x) = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} f(x - 1) \\ f(x) \\ f(x + 1) \end{bmatrix} \]

• Similarly, the gradient is:

\[f'(x) = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} f(x - 1) \\ f(x) \\ f(x + 1) \end{bmatrix} \]
Image Filters

• Many operations for images can be represented as linear filters
• Filters are a linear combination of the neighbourhood pixels
• In general, a 3x3 filter centred on the image at \(I(x, y) \) will calculate:
• *operator is convolution **not** matrix multiplication

\[
y = \sum a_i x_i
\]
Image Filters

- Creates a new image based on linear combination of local neighbourhood
- \(*\) is the convolution operator **not** matrix multiplication

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}
\quad \star
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\rightarrow
\begin{array}{ccc}
& & \\
& & \\
& &
\end{array}
\]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}
\quad \star
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\rightarrow
\begin{array}{ccc}
& & \\
& & \\
& &
\end{array}
\]

Identity

Horizontal Shift
Smoothing Filter + Gradient

• We want to calculate \(\frac{\delta}{\delta x} \ast (g \ast f(x, y)) \), i.e. the gradient of the smoothed image

• In 2D for a single direction (e.g. x) we would apply our two filters:

\[
\frac{\delta}{\delta x} = \frac{1}{2} [-1 \ 0 \ 1], \quad g = \frac{1}{4} [1 \ 2 \ 1]
\]

• It turns out that the convolution operator is associative however!

• i.e. \(\frac{\delta}{\delta x} \ast (g \ast f(x, y)) \equiv (\frac{\delta}{\delta x} \ast g) \ast f(x, y) \)

\[
\frac{\delta}{\delta x} \ast g = \frac{1}{2} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \frac{1}{4} [-1 \ 0 \ 1] = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}
\]

Sobel Filter (x direction)
Sobel Filter for Edges

\[
Sobel_x = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}
\]

\[
Sobel_y = \frac{1}{8} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}
\]

- Sobel filter is the standard image gradient filter
- There are many others however!
- Typically the normalization (1/8) term is ignored
Intermission
Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection
Issues with Gradient Edges

• Using gradient filters to find edges is not ideal:
 • Edge from gradient magnitude is “thick”, ideally as localized to one pixel
 • This is because we threshold the gradient magnitude
 • Can possibly include several pixels around the true edge location
Finding Better Edges

• What we are interested in finding is a single edge, at the exact extrema of $f'(x)$

• This is actually where zero crossing of the second derivative $f''(x)$ is!

• Using the second derivative, we can potentially **localize** edges better than with the gradient
Going back to 2D

• Recall the gradient is defined:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)$$

• In 2D the second derivative is called the **Laplacian** (∇^2):

$$\nabla^2 f = \nabla \cdot \nabla f = \left[\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \right] \cdot \left[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right] = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
Discrete 2nd Order Derivative

• Just as with the first derivative, there are many finite difference approximations of the second derivative

• When based on the central difference, the approximation for \(f(x) \):

\[
\frac{d^2 f}{dx^2} \approx f(x + 1) - 2f(x) + f(x - 1)
\]

Derivation of finite differences for 2nd order derivatives:
https://math.stackexchange.com/questions/210264/second-derivative-formula-derivation

Derivation of finite differences for 2nd order derivatives in terms of Taylor series:
Discrete Laplacian – 2D

\[\frac{d^2 f}{dx^2} \approx f(x + 1, y) - 2f(x, y) + f(x - 1, y) \]

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

• Therefore, we can approximate the Laplacian with:

\[\nabla^2 f \approx f(x + 1, y) + f(x, y + 1) + f(x - 1, y) + f(x, y - 1) - 4f(x, y) \]
Discrete Laplacian Filter

$$\nabla^2 f \approx f(x + 1, y) + f(x, y + 1) + f(x - 1, y) + f(x, y - 1) - 4f(x, y)$$

- Let’s represent this in convolutional filter form:

$$\nabla^2 f \approx \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
Laplacian of Gaussian

• Just as with the gradient, the Laplacian is highly sensitive to noise
• Typically smooth the image before applying the Laplacian with Gaussian
• Unlike with gradient we do not get direction of edge!
Laplacian of Gaussian

- This is often called the Laplacian of Gaussian
- Using Gaussian filters of different σ results in very different edges
- In fact, we see edges of different scales – this will be important later!

$\sigma = 3$ $\sigma = 9$ $\sigma = 27$ $\sigma = 49$
Difference of Gaussians

- The Laplacian of Gaussians is well approximated by simply subtracting two Gaussian functions
- This is called “Difference of Gaussians”
Difference of Gaussians

- Typically use $\sigma_2 \approx 1.6 \sigma_1$ to approximate LoG
- Notice again that we get edges from different scales with increasing σ
Difference of Gaussians

• Gaussian filter is **separable**, can compute it with $1 \times k + k \times 1$ filters:

• Actually Laplacian of Gaussian also has separable representation – but requires 4 filters instead of 2

• The Laplacian of Gaussian is relatively expensive to compute
Topic 4: 2D Images and Curves

- 2D Image Patches
- Image Gradients
- Edges
- Sobel Filter
- Second-Order Edges
- Canny Edges
- Circle Detection
Ideal Edge Detector

• We are still far from the ideal edge detector...

• Good Detection:
 • Want to minimize false edges, i.e. false positives
 • Want to minimize true edges missed, i.e. false negatives

• Good Localization
 • Want to find edges as close to true edge location as possible

• Single Response
 • Want to find only one pixel for any single true edge location

Derived from work of L. Fei-Fei
Canny Edge Detector

• First introduced by John Canny in his 1983 M.Sc. Thesis
• Still the most widely used edge detector today!

• Outline:
 • Step 1: Filter image with the derivative of Gaussian
 • Step 2: Calculate magnitude and orientation of resulting gradient
 • Step 4: Thin out thick edges ("non-maxima suppression")
 • Step 3: Hysteresis thresholding:
 • Use initial high threshold to find beginning of edge curve
 • Find remaining pixels belonging to edge curve with second, lower threshold

Canny Step 1 – Derivative of Gaussian

- Almost the exact same as Sobel, except we use **Gaussian** to smooth
 - Recall: Sobel uses a simple weighted average instead
Canny Step 2 – Calculate Magnitude/Direction

• Calculate gradient (central difference) magnitude and direction
• Direction is typically discretized to 4 possible angles (0, 45, 90, 135)
Canny Step 3 – Non-Maxima Suppression

• Remember we only want a single pixel response for each edge!

• “Non-Maxima Suppression”
 • Step 1: Compare the gradient magnitude along the non-zero pixels in the edge mask pixels in the +/- gradient direction (i.e. perpendicular to the edge)
 • Step 2: Keep largest gradient magnitude found, zero out others
Canny Step 4 – Hysteresis

• Uses two thresholds – upper and lower
 • Canny recommended a \textit{upper:lower} ratio between 2:1 and 3:1
• Find initial edge points using high threshold
• Use lower threshold to find other edge points that agree with the edge curve

Weaker edges found from lower $|\nabla f|$ threshold

Strong edges found from higher $|\nabla f|$ threshold
Canny Edges
Topic 4: 2D Images and Curves

• 2D Image Patches
• Image Gradients
• Edges
• Sobel Filter
• Second-Order Edges
• Canny Edges
• Circle Detection
Putting it all together!

• We create a startup (it’s the thing to do)
• Our pitch is a new app: couchchange™
 • Users upload phone images of their couch
 • We return an image highlighting where the coins is

• How do we do this?
 • Hint: you’ve actually seen everything you need already
Finding Circles

• Assumptions:
 • Images of a planar surface with coins
 • Surface is perpendicular to the camera
 • (i.e. quarters look like circles, not ellipses)

• Step 1: Find Canny edges
 • This will give us the edges for the object outline
 • We will also get lots of extraneous edges however!

• Step 2: Fit a model of a circle to the edge points
 • We need a robust method to do this...
RANSAC Circle Detection

• We want to fit a model of a circle to our edge points
• Circle centred at \((a, b)\) of radius \(r\):
 \[
 (x - a)^2 + (y - b)^2 = r^2
 \]

 • Use a set of randomly sampled points to give an initial estimate of the model
 • Need a minimum of 3 points to find parameters for a circle
RANSAC Circle Detection – Initial Circle

- Calculate an initial estimate of our circle parameters using our 3 initial points - many approaches to this (see reference)!
- Use our circle equations, gives us 3 equations, 3 unknowns:

\[
\begin{align*}
(x_0 - a)^2 + (y_0 - b)^2 &= r^2 \\
(x_1 - a)^2 + (y_1 - b)^2 &= r^2 \\
(x_2 - a)^2 + (y_2 - b)^2 &= r^2
\end{align*}
\]

However it looks like a quadratic system of equations! This is simpler than it seems, if we write it as:

\[
\begin{align*}
(x_0 - a)^2 + (y_0 - b)^2 &= (x_1 - a)^2 + (y_1 - b)^2 \\
(x_1 - a)^2 + (y_1 - b)^2 &= (x_2 - a)^2 + (y_2 - b)^2
\end{align*}
\]

Nicely the quadratic terms \(a^2, b^2\) cancel out, and we are left with two simple (but very lengthy) equations for calculating \((a, b)\)!

We can then use our circle equation to calculate \(r\):

\[
r = \sqrt{(x_0 - a)^2 + (y_0 - b)^2}
\]

https://qc.edu.hk/math/Advanced%20Level/circle%20given%203%20points.htm
RANSAC Circle Detection – Random Sample

- Checking for consensus is expensive
- We need to ensure our initial points are reasonable
- The initial points should not be too close – why?
- The initial points should not be co-linear – why?
RANSAC Circle Detection – Consensus

• We now have a circle centred at \((a, b)\) of radius \(r\):

\[
(x - a)^2 + (y - b)^2 = r^2
\]

• Inliers to our proposed model should be within a certain distance threshold of the circle’s circumference:

\[
\sqrt{(x_{\text{inlier}} - a)^2 + (y_{\text{inlier}} - b)^2} - r^2 \leq d_{\text{inlier}}
\]

• All other points are deemed outliers!
• Re-fit our model to our new complete set of inliers, to get a better estimate of the parameters
RANSAC Circle Detection – Consensus

• Count # of inlier edges we have for our re-fit model
• The larger the # of edges, the better the model!
• Decide if we have a good circle – if so, save it
 • Set threshold relative to circumference of circle, otherwise we bias towards large circles!
• Continue looking for better models until we reach iteration limit
RANSAC Circle Detection – Multiple Circles
Hough Transform

• Another common method of finding circles is the Hough transform
• Instead of fitting a model to a set of initial points, considers all possible models for each point
• We do this by voting in the parameter space
• For example, for a circle of **known** radius r:

\[(x - a)^2 + (y - b)^2 = r^2\]

• Our parameter space is the 2D space of all possible centres (a, b)
Hough Transform

• We can also represent a circle with the parameterization:

\[x = a + r \cos \theta \]
\[y = b + r \sin \theta \]

where \(\theta \in [0, 2\pi] \)

• Each edge pixel in the image space \((x, y)\) corresponds to many possible circles, i.e. parameters \((a, b)\)
Hough Transform

- Each edge pixel in the image space \((x, y)\) votes for all possible circle centres \((a, b)\) in parameter space that could have caused it
- The parameter space accumulates votes for all edge points
- Circle parameters that match the most edge pixels gain the most votes!
- Peaks of the Hough Transform are chosen as candidate circles

From Wikipedia
Hough Transform

• Disadvantages:
 • Not as robust to outliers/noise
 • Memory used to store discretized parameter space is considerable
 • Does not scale to models with many parameters
Overview of Topic 5

• Today we learned an early computer vision pipeline:
 • Given raw image input
 • Find salient local features (e.g. edges)
 • Match a model (encoding our assumptions) to our extracted features
• We went from a raw image to some understanding of the image
End of Topic 5