Topic 4:
Local analysis of image patches

• What do we mean by an image “patch”?
• Applications of local image analysis
• Visualizing 1D and 2D intensity functions
Local Image Patches

So far, we have considered pixels completely independently of each other (as a 2D array of numbers or RGB values)

In reality, photos have a great deal of structure. This structure can be analyzed at a local level (e.g., small groups of nearby pixels) or a global one (e.g., entire image)
Local Image Patches

There are many different types of patches in an image.

Patches corresponding to a “corner” in the image.
Local Image Patches

There are many different types of patches in an image.

Patches corresponding to an “edge” in the image.
Local Image Patches

There are many different types of patches in an image

Patches of uniform texture
Local Image Patches

There are many different types of patches in an image.

Patches associated with a single surface.
Local Image Patches

There are many different types of patches in an image

Perceptually-significant “features”
Local Image Patches

When is a group of pixels considered a local patch?

There is no answer to this question!

The notion of a patch is relative---it can be a single pixel.
Local Image Patches

When is a group of pixels considered a local patch?

There is no answer to this question!

The notion of a patch is relative---it can be the entire image
Local Image Patches

We will begin with mathematical descriptions that apply mostly to very small patches (e.g., 3x3)

... and eventually consider descriptions that apply to entire images
Topic 4:

Local analysis of image patches

• What do we mean by an image "patch"?
• Applications of local image analysis
• Visualizing 1D and 2D intensity functions
Why Do We Care?

Many applications...

• Recognition
• Inspection
• Video-based tracking
• Special effects
Recognition & Tracking

(El-Maraghi et al, CVPR’01)

(Rowley et al, PAMI’98)
Object removal from a photo

(Criminisi et al, CVPR 2003)
Colorization of black and white photos

Original (B&W) New (Color)

(Levin & Weiss, SIGGRAPH 2004)
Editing & Manipulating Photos

Scissoring objects from a photo

source images

composite image
Giving Photos a “Painted” Look

Case study: From P. Litwinowicz’s SIGGRAPH’97 paper “Processing Images and Videos for an Impressionist Effect”
Topic 4:

Local analysis of image patches

• What do we mean by an image “patch”?
• Applications of local image analysis
• Visualizing 1D and 2D intensity functions
Image row or column \leftrightarrow Graph in 2D

Gray-scale image

Graph in 2D

Point $(x_0, I(x_0, y_0))$
Image row or column ⇔ Graph in 2D

Gray-scale image

Graph in 2D

Row

\(y_0 \)

\(y \)

\(x_0 \)

\(x \)

Point

\((x_0, I(x_0, y_0))\)

\(I(x_0, y_0) \)
Gray-scale image $I(x, y)$
Image \Leftrightarrow Surface in 3D

Gray-scale image $I(x, y)$

Surface $z = I(x, y)$
Gray-scale image $I(x, y)$

Surface $z = I(x, y)$

- The height of the surface at (x, y) is $I(x, y)$
- The surface contains point $(x, y, I(x, y))$
Image \leftrightarrow Surface in 3D

Gray-scale image

Image patch

Surface patch $z = I(x, y)$

$(14, 4, I(14, 4))$

$(14, 4, 0)$
Topic 4.1: Polynomial fitting (Local analysis of 1D image patches as an example)

- Taylor series approximation of 1D intensity patches
- Estimating derivatives of 1D intensity patches:
 - Least-squares fitting
 - Weighted least-squares fitting
 - Robust polynomial fitting: RANSAC
Polynomial curve fitting/regression

Pixel intensities as graph in 2D

(our example)

Also useful for 2D curves in image, etc..
Estimating Derivatives For Image Row r

“Sliding window” algorithm:

- Define a “pixel window” centered at pixel (w,r)
- Fit n-degree poly to window’s intensities (usually $n=1$ or 2)
- Assign the poly’s derivatives at $x=0$ to pixel at window’s center
- “Slide” window one pixel over, so that it is centered at pixel $(w+1,r)$
- Repeat 1-4 until window reaches right image border

\[
\frac{dI}{dx}(w) \quad \text{image coordinate} \quad \frac{dI}{dx}(0) \quad \text{patch coordinate}
\]
“Sliding window” algorithm:

- Define a “pixel window” centered at pixel (w,r)
- Fit n-degree poly to window’s intensities (usually n=1 or 2)
- Assign the poly’s derivatives at x=0 to pixel at window’s center

\[
\frac{dI}{dx}(w) \quad \text{image coordinate} \\
\frac{dI}{dx}(0) \quad \text{patch coordinate}
\]

- “Slide” window one pixel over, so that it is centered at pixel (w+1,r)
- Repeat 1-4 until window reaches right image border
Least-Squares Polynomial Fitting

Scenario #1:

- Fit polynomial to ALL pixel intensities in a patch
- All pixels contribute equally to estimate of derivative(s) at patch center (i.e., at x=0)
Taylor-Series Approximation of $I(x)$

As graph in 2D

Taylor series expansion of $I(x)$ near the "patch" center 0

$$I(x) = I(0) + x \cdot \frac{dI}{dx}(0) + \frac{1}{2} x^2 \frac{d^2I}{dx^2}(0)$$

0-th order approximation

1st-order approximation of I

2nd-order approximation of I

$$+ \ldots + \frac{1}{n!} x^n \frac{d^nI}{dx^n}(0) + R_{n+1}(x)$$

n-th order approximation

The residual $R_{n+1}(x)$ satisfies

$$\lim_{x \to 0} R_{n+1}(x) = 0$$
Taylor-Series Approximation of $I(x)$

As graph in 2D

Taylor series expansion of $I(x)$ near the "patch" center O

For $x \in (-w, w)$

$$I(x) \approx [1 \times \frac{1}{2}x^2 \times \frac{1}{6}x^3 \ldots \frac{1}{n!}x^n]$$

for a given x, approximation depends on $(n+1)$ constants corresponding to the intensity derivatives at the patch origin
Taylor-Series Approximation of $I(x)$

As graph in 2D

Taylor series expansion of $I(x)$ near the "patch" center 0

Example: 0th-order approx

$I(x) = I(0)$

0th order approximation of I

$I(x) \approx \left[1 + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \cdots + \frac{1}{n!} x^n \right]$
Taylor-Series Approximation of $I(x)$

As graph in 2D

Taylor series expansion of $I(x)$ near the "patch" center 0

Example: 1st-order approx

$$I(x) = I(0) + x \cdot \frac{dI}{dx}(0)$$

1st-order approximation of I

$$I(x) \approx \left[1 + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \cdots + \frac{1}{n!} x^n \right]$$

$$\begin{pmatrix}
I(0) \\
\frac{dI}{dx}(0) \\
\frac{d^2I}{dx^2}(0) \\
\vdots \\
\frac{d^nI}{dx^n}(0)
\end{pmatrix}$$
Taylor-Series Approximation of $I(x)$

As graph in 2D

Taylor series expansion of $I(x)$ near the “patch” center 0

Example: 2nd-order approximation of I

$$I(x) = I(0) + x \cdot \frac{dI}{dx}(0) + \frac{x^2}{2} \frac{d^2I}{dx^2}(0) + \cdots$$

$$I(x) \approx \left[1 \cdot x \cdot \frac{1}{2} x^2 \cdot \frac{1}{6} x^3 \cdots \frac{1}{n!} x^n \right]$$
Topic 4.1:

Local analysis of 1D image patches

• Taylor series approximation of 1D intensity patches
• Estimating derivatives of 1D intensity patches:
 • Least-squares fitting
 • Weighted least-squares fitting
 • Robust polynomial fitting: RANSAC
Least-Squares Polynomial Fitting of $I(x)$

As graph in 2D

Our first "patch descriptor":

Intensity derivatives

To compute the n derivatives at pixel 0:

fit a polynomial of degree n to the patch intensities

\[I(x) = \left[1 \ x \ \frac{1}{2}x^2 \ \frac{1}{6}x^3 \ \cdots \ \frac{1}{n!}x^n \right] \]
Least-Squares Polynomial Fitting of \(I(x) \)

As graph in 2D

\[
\begin{align*}
5 &= \begin{bmatrix}
1 & 2 & \frac{1}{2} & 2^2 & \frac{1}{6} & 2^3 & \cdots & \frac{1}{n!} & 2^n
\end{bmatrix} \\
&\left(\begin{array}{c}
I(0) \\
\frac{dI}{dx}(0) \\
\frac{dI}{dx^2}(0) \\
\vdots \\
\frac{d^n I}{dx^n}(0)
\end{array}\right)
\end{align*}
\]

\(\Rightarrow \) have 2\(w+1 \) eqs for the 2\(w+1 \) pixels

\[
I(x) = \begin{bmatrix}
1 & x & \frac{1}{2}x^2 & \frac{1}{6}x^3 & \cdots & \frac{1}{n!}x^n
\end{bmatrix} \\
\left(\begin{array}{c}
I(0) \\
\frac{dI}{dx}(0) \\
\frac{dI}{dx^2}(0) \\
\vdots \\
\frac{d^n I}{dx^n}(0)
\end{array}\right)
\]
Least-Squares Polynomial Fitting of $I(x)$

As graph in 2D

Patch (2w+1 pixels)

$I(2w+1)_{x \times 1} = X(2w+1)_{x \times (n+1)} \cdot d(n+1)_{x \times 1}$

$I(x) \approx \left[1 \ x \ \frac{1}{2}x^2 \ \frac{1}{6}x^3 \ \cdots \ \frac{1}{n!}x^n \right] \left[\begin{array}{c} I(0) \\ \frac{dI}{dx}(0) \\ \frac{d^2I}{dx^2}(0) \\ \vdots \\ \frac{d^nI}{dx^n}(0) \end{array} \right]$
Least-Squares Polynomial Fitting of $I(x)$

As graph in 2D

\[I_{2w+1} \times 1 = X_{(2w+1) \times (n+1)} d_{(n+1) \times 1} \]

\[\begin{array}{c|c|c|c|c}
 x=-w & x=0 & x=2 & \ldots & x=w \\
\hline
 I_1 & I_2 & I_{w+1} & \ldots & I_{2w+1} \\
\end{array} \]

Intensities (known) \quad \text{positions (known)} \quad \text{derivatives (unknown)}

Solving linear system in terms of d minimizes the "fit error"

\[\| I - Xd \|^2 \]

Definition (α-norm $\|v\|_\alpha$ of vector v)

for $v = [v_1, v_2, \ldots, v_m]$, $\|v\|_\alpha = \left(\sum_{i=1}^{m} (v_i)^\alpha \right)^{1/\alpha}$
Least-Squares Polynomial Fitting of \(I(x) \)

Example

- For the solution \(d \), the vector \(v = X d \) gives us the values of the polynomial \(\alpha \) at \(-w, \ldots, 0, \ldots, w \).

- This solution minimizes the 2-norm (i.e., the length) of the error vector \((I - v) \):
 \[
 (\sum_{i=1}^{2w+1} (I_i - v_i)^2)^{1/2}
 \]

Patch (2w+1 pixels)

<table>
<thead>
<tr>
<th>(x = -w)</th>
<th>(x = 0)</th>
<th>(x = 2)</th>
<th>(x = w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>(I_2)</td>
<td>(I_{w+1})</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

\[
I \text{ (2w+1) x 1} = X \text{ (2w+1) x (n+1) } d \text{ (n+1) x 1}
\]

\[
\uparrow \quad \uparrow \quad \uparrow
\text{intensities} \quad \text{positions} \quad \text{derivatives}
\text{(known)} \quad \text{(known)} \quad \text{(unknown)}
\]

Solving linear system in terms of \(d \) minimizes the "fit error"

\[
\| I - Xd \|^2
\]

Solution \(d \) is called a least-squares fit
0th-Order (Constant) Estimation of I(x)

Special case:

- Solution minimizes
 \[
 \sum_{i=1}^{2w+1} (I_i - d_1)^2
 \]

- Solution is the mean intensity of the patch:
 \[
 d_1 = \frac{1}{2w+1} \sum_{i=1}^{2w+1} I_i
 \]

Patch (2w+1 pixels)

\[
\begin{array}{cccc}
I_1 & I_2 & \cdots & I_{2w+1} \\
x=-w & x=0 & x=2 & x=w \\
\end{array}
\]

\[
I_{(2w+1) \times 1} = X_{(2w+1) \times 1} d_{d \times 1}
\]

\[
\uparrow \quad \uparrow \quad \uparrow
\]

Intensities (known) \hspace{1cm} \text{positions (known)} \hspace{1cm} \text{one unknown (equal to } \Sigma(0)\text{)}

\[
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_{2w+1}
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix} \begin{bmatrix}
d_1 \\
\end{bmatrix} \quad \text{I}(0)
\]

Solving linear system in terms of \(d\) minimizes the "fit error"

\[
\| I - Xd \|^2
\]
Special case:

\[I \]

\[I_2, I_3, I_4, I_5, I_6, I_7 \]

\[-3, -2, -1, 0, 1, 2, 3 \]

- Solution minimizes \(\sum_{i=1}^{2w+1} (I_i - d_i)^2 \)
- Solution is the mean intensity of the patch:
 \[
 d_i = \frac{1}{2w+1} \sum_{i=1}^{2w+1} I_i
 \]

Proof

- Let \(E(x) = \sum_{i=1}^{2w+1} (I_i - x)^2 \)
- At the minimum of \(E(x) \), the derivative \(\frac{d}{dx} E(x) \) must be zero
- \[
 \frac{d}{dx} E(x) = \sum_{i=1}^{2w+1} \frac{d}{dx} \left[(I_i - x)^2 \right]
 = \sum_{i=1}^{2w+1} 2(I_i - x)(-1)
 = -2 \left(\sum_{i=1}^{2w+1} (I_i - x) \right)
 = -2 \left(\frac{\sum_{i=1}^{2w+1} I_i}{2w+1} + 2(2w+1)x \right)
 \]
- \[
 \frac{d}{dx} E(x) = 0 \iff x = \frac{1}{2w+1} \left(\sum_{i=1}^{2w+1} I_i \right)
 \]
1st-Order (Linear) Estimation of I(x)

Special case:

<table>
<thead>
<tr>
<th>x = -w</th>
<th>x = 0</th>
<th>x = 2</th>
<th>x = w</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>I_2</td>
<td>...</td>
<td>I_{w+1}</td>
</tr>
</tbody>
</table>

- Solution minimizes sum of 'lethical' distances between line and image intensities.
- Gives us an estimate of I(0) and \(\frac{dI(0)}{dx} \) (i.e. value & derivative at 0).

\[
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_{w+1}
\end{bmatrix} =
\begin{bmatrix}
1 & -3 \\
1 & -2 \\
\vdots & \vdots \\
1 & 3
\end{bmatrix}
\begin{bmatrix}
d_1 \\
d_2
\end{bmatrix}
\]

\[
\frac{dI}{dx}(0) \leftarrow I(0)
\]

Solving linear system in terms of \(d \) minimizes the "fit error"

\[
\| I - Xd \|^2
\]
Special case:

- Fits a parabola/hyperbola/ellipse
- Gives us an estimate of 1st & 2nd image derivative at patch center

Patch (2w+1 pixels)

<table>
<thead>
<tr>
<th>x=-w</th>
<th>x=0</th>
<th>x=2</th>
<th>x=w</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>(I_2)</td>
<td>(I_{w+1})</td>
<td>(I_{2w+1})</td>
</tr>
</tbody>
</table>

\[
I_{(2w+1) \times 1} = X_{(2w+1) \times 3} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}
\]

\[
\begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_{w+1} \end{bmatrix} = \begin{bmatrix} 1 & -3 & 9/2 \\ 1 & -2 & 2 \\ \vdots & \vdots & \vdots \\ 1 & 3 & 9/2 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}
\]

\[
\frac{d^2 I}{dx^2} (0)
\]
Topic 4.1: Local analysis of 1D image patches

- Taylor series approximation of 1D intensity patches
- Estimating derivatives of 1D intensity patches:
 - Least-squares fitting
 - Weighted least-squares fitting
 - Robust polynomial fitting: RANSAC
Weighted Least Squares Polynomial Fitting

Scenario #1:

• Fit polynomial to ALL pixel intensities in a patch
Scenario #2:

- Fit polynomial to ALL pixel intensities in a patch
- Pixels contribute to estimate of derivative(s) at center according to a weight function $\Omega(x)$
Polynomial Fitting: A Linear Formulation

Q: Will the estimate of \(\frac{dI}{dx}(0) \) be the same or different in the two cases below? (Assume a 1st-order fit)

Case #1

Ans: the values will differ because all patch pixels contribute equally to the linear system!

\[
I(x) = \left[1 \quad \frac{x}{2} \quad \frac{1}{6} x^3 \quad \ldots \quad \frac{1}{n!} x^n \right]
\]

Patch (2w+1 pixels)

\[
\begin{array}{cccc}
I_1 & I_2 & \ldots & I_{w+1} \\
(2w+1) \times 1 & = & X(2w+1) \times (n+1) & d(n+1) \times 1 \\
\end{array}
\]
Q: How can we bias our estimate of \(\frac{dI(x)}{dx} \) toward the patch center?

Case #1

Weight function \(\omega(x) \) (e.g., \(\omega(x) = e^{-x^2} \))

Case #2

Patch (2w+1 pixels)

<table>
<thead>
<tr>
<th>(x=-w)</th>
<th>(x=0)</th>
<th>(x=2)</th>
<th>(x=w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>(I_2)</td>
<td>(I_{w+1})</td>
<td>(...)</td>
</tr>
</tbody>
</table>

\[
I_{(2w+1) \times 1} = X_{(2w+1) \times (n+1)} d_{(n+1) \times 1}
\]

Idea: Weigh pixels near center more than pixels away from it

New equation for pixel \(x \):

\[
\omega(x) I(x) = \omega(x) \left[1 + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \cdots + \frac{1}{n!} x^n \right]
\]

\[
\frac{d^N I(x)}{dx^N} \bigg|_{x=0}
\]
Q: How can we bias our estimate of \(\frac{dI(x)}{dx} \) toward the patch center?

Case #1

Weight function \(\omega(x) \) (e.g., \(\omega(x) = e^{-x^2} \))

Case #2

Patch (2w+1 pixels)

\[
\begin{array}{c|c|c|c|c}
 x = -w & x = 0 & x = 2 & x = w \\
 I_1 & I_2 & \cdots & I_{w+1} & \cdots & I_{2w+1} \\
\end{array}
\]

\[
\begin{bmatrix}
\omega_{-1} & 0 & \cdots & 0 \\
0 & \omega_1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & \omega_{2w+1}
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_{2w+1}
\end{bmatrix} = \begin{bmatrix}
\omega_{-1} \\
\omega_1 \\
\vdots \\
\omega_{2w+1}
\end{bmatrix} \begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_{2w+1}
\end{bmatrix}
\]

Idea: Weigh pixels near center more than pixels away from it.

Solution \(d \) minimizes the norm

\[
\left\| \begin{bmatrix}
\omega_{-1} & 0 & \cdots & 0 \\
0 & \omega_1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & \omega_{2w+1}
\end{bmatrix} (I - Xd) \right\|^2
\]
Weighted Least-Squares Estimation of $I(x)$

- For the solution d, the vector $v = Xd$ gives us the values of the polynomial at $(-w, \ldots, 0, \ldots, w)$

- This solution minimizes the 2-norm (i.e., the length) of the weighted error vector: $\left(\sum_{i=1}^{2w+1} \Omega_i (I_i - v_i)^2 \right)^{1/2}$

Patch $(2w+1 \text{ pixels})$

<table>
<thead>
<tr>
<th>$x=-w$</th>
<th>$x=0$</th>
<th>$x=2$</th>
<th>$x=w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>I_2</td>
<td>I_{w+1}</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

\[
\Omega \begin{bmatrix}
\Omega_{-1} & 0 \\
0 & 0 \\
0 & \Omega_{2w+1}
\end{bmatrix} I = \begin{bmatrix}
\Omega_{-1} \\
0 \\
\Omega_{2w+1}
\end{bmatrix} Xd
\]

Idea: Weigh pixels near center more than pixels away from it.

Solution d minimizes the norm $\left\| \begin{bmatrix}
\Omega_{-1} & 0 \\
0 & \Omega_{2w+1}
\end{bmatrix} (I - Xd) \right\|^2$
Topic 4.1:

Local analysis of 1D image patches

- Taylor series approximation of 1D intensity patches
- Estimating derivatives of 1D intensity patches:
 - Least-squares fitting
 - Weighted least-squares fitting
 - Robust polynomial fitting: RANSAC
Robust Polynomial Fitting

Scenario #3:

- Fit polynomial only to SOME pixel intensities in a patch (the “inliers”)

Many techniques:
- m-estimation
- least-median-squares
- RANSAC (RANdom SAmple Consensus)
- Bilateral filtering
Robust Polynomial Fitting

Scenario #3:

- Fit polynomial only to SOME pixel intensities in a patch (the “inliers”)

Main problem:
we don’t know which pixels are inliers and which are outliers!!
Scenario #3:

- Find the “inlier” pixels in a patch of radius w
- Fit a polynomial to the inlier pixels only

Given:
- $n =$ degree of poly
- $p =$ fraction of inliers
- $t =$ fit threshold
- $p_s =$ success probability

```
Pixel (x)
```

```
Intensity
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
RANSAC Algorithm

Example: Line fitting using RANSAC (i.e., n=2 unknown polynomial coefficients)

- Step 1: Randomly choose n pixels from the patch
RANSAC Algorithm

Example: Line fitting using RANSAC (i.e., n=2 unknown polynomial coefficients)

- Step 2: Fit the poly using the chosen pixels/intensities

![Diagram showing line fitting using RANSAC](image)
RANSAC Algorithm

Example: Line fitting using RANSAC (i.e., n=2 unknown polynomial coefficients)

• Step 3: Count pixels with vertical distance < threshold \(t \)

\[\# \text{pixels} = 5 \]
RANSAC Algorithm

Example: Line fitting using RANSAC (i.e., $n=2$ unknown polynomial coefficients)

- Step 4: If there aren’t “enough” such pixels, REPEAT (not more than K times)

$$w = \frac{7}{15}, \quad \#\text{pixels} = 5, \quad p = 0.85$$

Example:
- Suppose we know that there are at most 2 outlying pixels. Then,
 $$p = \frac{2w+1-2}{2w+1} = \frac{13}{15} = 85\%$$
Example: Line fitting using RANSAC (i.e., $n=2$ unknown polynomial coefficients)

- Step 1: Randomly choose n pixels from the patch
RANSAC Algorithm

Example: Line fitting using RANSAC (i.e., \(n=2 \) unknown polynomial coefficients)

- Step 4: If there are “enough” such pixels, STOP
 Label them as “inliers” & do a least-squares fit to the INLIER pixels only

\[w = 7 \]
\[\# \text{pixels} = 13 \]
\[p = 0.85 \]

\[p \cdot (2w+1) = 0.85 \cdot 15 = 13 \]
\[\Rightarrow \text{success!} \]
RANSAC Algorithm

Example: Line fitting using RANSAC (i.e., $n=2$ unknown polynomial coefficients)

- Step 4: If there are “enough” such pixels, STOP
 Label them as “inliers” & do a least-squares fit to the INLIER pixels only
RANSAC Algorithm

Example: Line fitting using RANSAC (i.e., n=2 unknown polynomial coefficients)

- Idea: Eventually, after “enough” trials, all of the chosen pixels will be inliers \Rightarrow poly will have vertical distance below t for “enough” pixels
RANSAC Algorithm

Given:
- \(n \) = degree of poly
- \(p \) = fraction of inliers
- \(t \) = fit threshold
- \(p_s \) = success probability

Repeat at most \(K \) times:
1. Randomly choose \(n+1 \) pixels
2. Fit \(n \)-degree poly
3. Count pixels whose vertical distance from poly is \(< t \)
4. If there are at least \((2w+1)p \) pixels, EXIT LOOP
 a. Label them as inliers
 b. Fit \(n \)-degree poly to all inlier pixels

Q: What should \(K \) be?
- Probability we chose an inlier pixel: \(p \)
- Probability we chose \((n+1)\) inlier pixels: \(p^{n+1} \)
- Prob at least 1 outlier chosen in all \(K \) trials: \((1-p^{n+1})^K\)
RANSAC Algorithm

Given:
- \(n \) = degree of poly
- \(p \) = fraction of inliers
- \(t \) = fit threshold
- \(p_s \) = success probability

Repeat at most \(K \) times:
1. Randomly choose \(n+1 \) pixels
2. Fit \(n \)-degree poly
3. Count pixels whose vertical distance from poly is \(\leq t \)
4. If there are at least \((2w+1)p \) pixels, EXIT LOOP
 a. Label them as inliers
 b. Fit \(n \)-degree poly to all inlier pixels

Q: What should \(K \) be?

- Probability we chose an inlier pixel: \(p \)
- Probability we chose \((n+1) \) inlier pixels: \(p^{n+1} \)
- Prob at least 1 outlier chosen: \(1 - p^{n+1} \)
- Prob at least 1 outlier chosen in all \(K \) trials: \((1-p^{n+1})^K \)
- Failure probability: \((1-p^{n+1})^K \)
- Success probability \(p_s = 1 - (1-p^{n+1})^K \)

By taking logs on both sides,

\[
K = \frac{\log (1-p_s)}{\log (1-p^{n+1})}
\]