
Topic 4:

Local analysis of image 
patches

• What do we mean by an image “patch”?
• Applications of local image analysis
• Visualizing 1D and 2D intensity functions



Local Image Patches
So far, we have considered pixels completely independently

of each other (as a 2D array of numbers or RGB values)

In reality, photos have a great deal of structure
This structure can be analyzed at a local level (eg., small 

groups of nearby pixels) or a global one (eg. entire image)

pixel



Local Image Patches
There are many different types of patches in an image

Patches corresponding to an “edge” in the image



Local Image Patches
There are many different types of patches in an image

Patches corresponding to a “corner” in the image



Local Image Patches
There are many different types of patches in an image

Patches of uniform texture



Local Image Patches
There are many different types of patches in an image

Patches associated with a single surface



Local Image Patches
There are many different types of patches in an image

Perceptually-significant “features”



Local Image Patches
When is a group of pixels considered a local patch?

There is no answer to this question! 

The notion of a patch is relative---it can be a single pixel



Local Image Patches
When is a group of pixels considered a local patch?

There is no answer to this question! 

The notion of a patch is relative---it can be the entire image



Local Image Patches
We will begin with mathematical descriptions that apply

mostly to very small patches (e.g., 3x3)

… and eventually consider descriptions that apply to entire
images 
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Why Do We Care?
Many applications…

• Recognition
• Inspection
• Video-based tracking
• Special effects 



Recognition & Tracking

(El-Maraghi et al, CVPR’01)

(Rowley et al, PAMI’98)



Editing & Manipulating Photos
Object removal from a photo

(Criminisi et al, CVPR 2003)

Original New



Editing & Manipulating Photos
Colorization of black and white photos

(Levin & Weiss, SIGGRAPH 2004)

Original (B&W) New (Color)



Editing & Manipulating Photos
Scissoring objects from a photo 
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Giving Photos a “Painted” Look
Case study: From P. Litwinowicz’s SIGGRAPH’97 paper

“Processing Images and Videos for an
Impressionist Effect”
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Image row or column Û Graph in 2D
Gray-scale image                       Graph in 2D

Point
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Image Û Surface in 3D
Gray-scale image I(#, %)



Image Û Surface in 3D
Gray-scale image SurfaceI(#, %) z = I(#, %)



Image Û Surface in 3D
Gray-scale image SurfaceSurfaceI(#, %) z = I(#, %)

• The height of the surface
at (#, %) is I(#, %)

• The surface contains point
(#, %, I #, % )



Gray-scale image

Image Û Surface in 3D
Image patch

Surface patch z = I(%, ')

(14, 4, I 14, 4 )

(14, 4, 0)



Topic 4.1:
Polynomial fitting
(Local analysis of 1D image 
patches as an example)

• Taylor series approximation of 1D intensity patches
• Estimating derivatives of 1D intensity patches:

• Least-squares fitting
• Weighted least-squares fitting
• Robust polynomial fitting: RANSAC



Polynomial curve fitting/regression
Pixel intensities as graph in 2D

(our example)

Also useful for 2D curves in image, etc..



Estimating Derivatives For Image Row r
“Sliding window” algorithm:

• Define a “pixel window” centered 
at pixel (w,r) 

• Fit n-degree poly to window’s 
intensities (usually n=1 or 2) 

• Assign the poly’s derivatives at x=0           
to pixel at window’s center 

• “Slide” window one pixel over, so 
that it is centered at pixel (w+1,r)

• Repeat 1-4 until window reaches 
right image border

�!, #�
row #

'I
') (w)

'I
') (0)image coordinate patch coordinate

In this demonstration, the pixel index starts from 
0, so the patch is (0,r) to (2w,r), centering at w.



Estimating Derivatives For Image Row r
“Sliding window” algorithm:

• Define a “pixel window” centered 
at pixel (w,r) 

• Fit n-degree poly to window’s 
intensities (usually n=1 or 2) 

• Assign the poly’s derivatives at x=0           
to pixel at window’s center 

• “Slide” window one pixel over, so 
that it is centered at pixel (w+1,r)

• Repeat 1-4 until window reaches 
right image border
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In this demonstration, the pixel index starts from 
0, so the patch is (0,r) to (2w,r), centering at w.



Least-Squares Polynomial Fitting
Scenario #1:

• Fit polynomial to ALL pixel intensities in a patch

• All pixels contribute equally to estimate of 

derivative(s) at patch center (i.e., at x=0)

Pixel (x)

Intensity

0

w-w



Taylor-Series Approximation of I(x)

As graph in 2D



Taylor-Series Approximation of I(x)

As graph in 2D

for a given x, approximation
depends on (n+1) constants
corresponding to the intensity
derivatives at the patch origin

2



Taylor-Series Approximation of I(x)

As graph in 2D

2



Taylor-Series Approximation of I(x)

As graph in 2D

2



Taylor-Series Approximation of I(x)

As graph in 2D

2
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patches

• Taylor series approximation of 1D intensity patches
• Estimating derivatives of 1D intensity patches:

• Least-squares fitting
• Weighted least-squares fitting
• Robust polynomial fitting: RANSAC



Least-Squares Polynomial Fitting of I(x)

As graph in 2D

2



Least-Squares Polynomial Fitting of I(x)

As graph in 2D

2



Least-Squares Polynomial Fitting of I(x)

As graph in 2D

2



As graph in 2D

Least-Squares Polynomial Fitting of I(x)

| |



Least-Squares Polynomial Fitting of I(x)



0th-Order (Constant) Estimation of I(x)



0th-Order (Constant) Estimation of I(x)



1st-Order (Linear) Estimation of I(x)

squared



2nd-Order (Quadratic) Estimation of I(x)



Topic 4.1:

Local analysis of 1D image 
patches

• Taylor series approximation of 1D intensity patches
• Estimating derivatives of 1D intensity patches:

• Least-squares fitting
• Weighted least-squares fitting
• Robust polynomial fitting: RANSAC



Weighted Least Squares Polynomial Fitting
Scenario #1:

• Fit polynomial to ALL pixel intensities in a patch

Pixel (x)

Intensity

0 w-w



Weighted Least Squares Polynomial Fitting
Scenario #2:

• Fit polynomial to ALL pixel intensities in a patch

• Pixels contribute to estimate of derivative(s) at 
center according to a weight function W(x)

Pixel (x)

Intensity

0 w-w



Polynomial Fitting: A Linear Formulation

2



Weighted Least-Squares Estimation of I(x)

2



Weighted Least-Squares Estimation of I(x)



Weighted Least-Squares Estimation of I(x)



Topic 4.1:

Local analysis of 1D image 
patches

• Taylor series approximation of 1D intensity patches
• Estimating derivatives of 1D intensity patches:

• Least-squares fitting
• Weighted least-squares fitting
• Robust polynomial fitting: RANSAC



Robust Polynomial Fitting
Scenario #3:

• Fit polynomial only to SOME pixel intensities in a patch
(the “inliers”)

Pixel (x)

Intensity

0

Many techniques:
• m-estimation
• least-median-squares
• RANSAC (RANdom        
SAmple Consensus)

• Bilateral filtering

w-w



Robust Polynomial Fitting
Scenario #3:

• Fit polynomial only to SOME pixel intensities in a patch

(the “inliers”)

Pixel (x)

Intensity

0

Main problem:

we don’t know which   
pixels are inliers and 
which are outliers!!

w-w



Polynomial Fitting Using RANSAC
Scenario #3:

• Find the “inlier” pixels in a patch of radius w
• Fit a polynomial to the inlier pixels only

Pixel (x)

Intensity

0

Given:
• n = degree of poly
• p = fraction of inliers 
• t = fit threshold
• ps = success probability

w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Step 1: Randomly choose n pixels from the patch

Pixel (x)

Intensity

0
w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Step 2: Fit the poly using the chosen pixels/intensities

Pixel (x)

Intensity

0
w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Step 3: Count pixels with vertical distance < threshold t

Pixel (x)0
w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Step 4: If there aren’t “enough” such pixels, REPEAT
(not more than K times)

Pixel (x)0
w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Step 1: Randomly choose n pixels from the patch

Pixel (x)

Intensity

0
w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Step 4: If there are “enough” such pixels, STOP
Label them as “inliers” & do a least-squares fit
to the INLIER pixels only

Pixel (x)

Intensity

0

w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Step 4: If there are “enough” such pixels, STOP
Label them as “inliers” & do a least-squares fit
to the INLIER pixels only

Pixel (x)

Intensity

0

w-w



RANSAC Algorithm
Example: Line fitting using RANSAC (i.e., n=2 unknown 

polynomial coefficients)

• Idea: Eventually, after “enough” trials, all of the chosen 
pixels will be inliers Þ poly will have vertical 
distance below t for “enough” pixels

Pixel (x)

Intensity

0
w-w



RANSAC Algorithm

Repeat at most K times:

1. Randomly choose n+1 pixels

2. Fit n-degree poly

3. Count pixels whose vertical 
distance from poly is < t

4. If there are at least 
(2w+1)p pixels, EXIT LOOP

a. Label them as inliers

b. Fit n-degree poly to all 
inlier pixels 0

Given:
• n = degree of poly
• p = fraction of inliers 
• t = fit threshold
• ps = success probability



RANSAC Algorithm

Repeat at most K times:

1. Randomly choose n+1 pixels

2. Fit n-degree poly

3. Count pixels whose vertical 
distance from poly is < t

4. If there are at least 
(2w+1)p pixels, EXIT LOOP

a. Label them as inliers

b. Fit n-degree poly to all 
inlier pixels

Given:
• n = degree of poly
• p = fraction of inliers 
• t = fit threshold
• ps = success probability


