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* High Dynamic Range (HDR)
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* Computing the Camera Response Function



Dynamic Range

* Our visual perception is
markedly different than that
we see in photos

* Highlighted by trying to
photograph scenes with very
bright & very dark areas

* Dynamic range: ratio
between the brightest &
darkest areas of image visible

* Measured in “stops” (like EV):
log, (dynamic range)

Debevec et al, SIGGRAPH’97
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Dynamic Range

* Human: ~14 EV stops
e 8-bit image: ~6 stops
* EVis a log scale!

* We can’t capture HDR well

* Best sensors capture 14
bits/pixel

* Most images are 8-bit

* We can’t display HDR well
* TV/monitors: 6-10 Stops

Debevec et al, SIGGRAPH’97

(T. Borer et al. "A "Display Independent" High Dynamic Range Television System”)



http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP309.pdf

Capturing HDR: The Problem

* Bright pixels: saturate the sensor — no information!
* Dark pixels: are below the threshold required to be represented




Capturing HDR: Multiple Exposures

* |dea: Take photos at multiple EV to capture more dynamic range
* For low EV, bright areas won’t saturate pixels

* For high EV, dark areas will have give enough light to be representable




Displaying HDR: Tone Mapping

* |dea: Like we use a gamma
function to better display
linear images, find a mapping
function that can display
more tones from our HDR
image in 8-bit LDR display

* Making this look realisticis
perhaps the bigger challenge! &

R. Fattal et al., “Gradient Domain High Dynamic Range Compression,” Proc. ACM SIGGRAPH 2002



HDR In 20195

* A lot has changed since Fattal et al. in 2002

* Almost every modern smartphone has an HDR capture mode (of
various extent/quality)

* High-end TVs/monitors now sell with “HDR” feature, movies are
increasingly captured in HDR (both of these 10-bit, ~10 stops!)



HDR In 20195

* Almost every new
smartphone has an HDR
capture mode (of
various extent/quality)

Burst photography for high dynamic range and low-light imaging
on mobile cameras

Samuel W. Hasinoff Dillon Sharlet Ryan Geiss Andrew Adams
Jonathan T. Barron Florian Kainz Jiawen Chen Marc Levoy
Google Research

Figure 1: A comparison of a conventional camera pipeline (left, middle) and our burst photography pipeline (right) running on the same
cell-phone camera. In this low-light setting (about 0.7 lux), the conventional camera pipeline underexposes (left). Brightening the image
(middle) reveals heavy spatial denoising, which results in loss of detail and an unpleasantly blotchy appearance. Fusing a burst of images
increases the signal-to-noise ratio, making aggressive spatial denoising unnecessary. We encourage the reader to zoom in. While our pipeline
excels in low-light and high-dynamic-range scenes (for an example of the latter see figure 10), it is computationally efficient and reliably
artifact-free, so it can be deployed on a mobile camera and used as a substitute for the conventional pipeline in almost all circumstances. For
readability the figure has been made uniformly brighter than the original photographs.



HDR In 20195

* High-end TVs now sell with “HDR”
of varying quality

* Movies are captured in HDR

e Both of these are at best 10-bit,
~10 stops!

e Still far from human DR!
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Capturing HDR: Idea

* Problem: Our cameras can only capture a
limited representation of the scene
irradiance @, represented by pixel value Z

* In different exposures, a different dynamic
range for each pixel is captured

* The true scene irradiance for each pixel will
only be represented within the dynamic
range of some of these photos

* |dea: Let’s capture many exposures and
somehow combine them!




Capturing H

* What camera settings should we use capture the different exposures?



Capturing HDR: Multiple Exposures

At = 30s

* Capture with different exposure times At V W

* Assume view doesn’t change (i.e. camera is D
on tripod, or steady), and scene is static b=

* To combine, we need to know how pixel =
value in each image is relates!




Capturing HDR: Multiple Exposures

* Assume we have two photos, A and B,
where At, = 2Atg

* j.e. B has half the exposure duration

* How does each pixel Zg(x, y) in B relate to
corresponding pixel Z, (x,y) in A?




Capturing HDR: Multiple Exposures

* Za(x,v),Zg(x,y), where At, = 2Atg

* If we assume the camera response function
is linear then,

* Za(x,y) = 27g(x,y)

* However, we pass the pixel’s response
through a non-linear gamma function when
converting from linear RAW image! (see Topic 1)

* If we have the RAW photos we are set
 What if we don’t?




Inverse Camera Response Function

* With RAW, response is linear (up to I;,)

* Without RAWSs, knowing the relative
exposure of two photos relies on us
knowing the camera response function:

fcamera

* Recall: f.amera 8ives the pixel value (Z)
for a given scene irradiance:

Z = fcamera((DAt)

Lens Shutter
scene sensor sensor
radiance — — irradiance — J. — exposure —
(L) (E) (X)
X = DAt
\(CCD ADC Remapping
final
A > analog __ digital _| digital
voltages fﬂ_’ values _,_r/rl__> values
I il
| |
RAW Processed

(i.e. JPEG, PNG)




Inverse Camera Response Function

* Recall C.R.F. gives the pixel value (Z) for a given scene irradiance:
Z = feamera (PAL)

* We want the the scene irradiance given the pixel value (Z), i.e. the
inverse C.R.F.:

DAL = camera_1 (Z)
7 J T

photons/sec pixel value
exposure time



lrradiance from Pixel Value

* Assume we have N different exposures

e Each exposure At gives us an estimate of
the irradiance @ for the pixel value Z:

DAL = fcamera_1 (Z)

* Some of these estimates will be better than
others!

* i.e. estimates from very dark/bright pixels will 1 , ,
be poor (why?) 100 500 1000




Merging Multiple Exposures: Debevec et al.

At = 30s 20s 15s

* Algorithm Outline: (see Debevec et al. in readings)

for each pixel location i and pixel value Z;:
for each photoj = 1, ..., P with exposure time Atj:
estimate @j; at pixel location i given At;, Z;

combine estimates CDi]-, wherej =1, ..., P to get
b,

Result: HDR image where each pixel is a float based
on olur estimate of the scene irradiance ®; for each
pixe

* iis the pixel location, regarding image as flattened
1D array of pixels
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Estimating the Camera Response Function

 \Want to estimate the function:
—1
DAt = fcamera (Z)

* For every photo we take, we get
samples of Z and At

* Problem: we have no way of
measuring ®!

e Solution: we have a lot of data, and
a couple of tricks!

At = 30s

V




Estimating the Camera Response Function

At = 30s

DAL = fcamera_l(Z)

How do these quantities change by pixel/photo?

* feamera: Same for all pixels & photos
e /: different for each pixel and image

e At: different for each photo, same for pixels in
the same photo

* @: same for corresponding pixel location across
different photos (same scene irradiance), ,
different across pixel locations




Trick #1: Log-Inverse Response Function

* We know how to solve linear systems of equations, however,

fFYA2)=d - At
isn’t linear, i.e.:
aixq + arx- + ...+ aAnxXy = b

* Instead we can represent it using log as:

log f~1(Z) = log® + log At

« We will denote g(Z) = log f~1(Z) as the log-inverse response function:

g(Z) =log® + log At



Trick #2: Discrete Function Approximation

e Our pixels only have 256 discrete values, i.e. Z € Z:0 < Z < 255
* Thus we can treat each value of Z as a different equation, i.e.:

g(Z =0) =log® + log At
g(Z=1)=logd + logAt

g(Z = 255) = log @ + log At



Computing the Log-Inverse Response Fcn.

® PIOt Samples Of pixel Values Z V.S. pIgtofgi’Zij) fromlthree pixels olI)sewed infivelimages.assulming unit radilance at each pixel
log At + log @ for 3 different pixel o ]
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Computing the Log-Inverse Response Fcn.

* With the correct relative log @ for : pormalized lotof () aferdetemining it expostres
each pixel location, the samples
line up

(Ei * (delta t)j)

log exposure
N

1 | 1 | 1
0 50 100 150 200 250 300
pixel value (Zij)



Putting it all together

For each pixel location1 <i < N, photo1 <j < P:

pixel value for ith pixel, jt" image (known) pixel scene irradiance for for it" pixel (unknown)

\
7q(Zl-j) = log ®; + log A¢;

\K

inverse log C.R.F. (unknown) exposure time of j*" image (known)

We want to compute:

* g(0),g(1), ..., g(255)
* log ®;

We are given:

* N pixel locations + intensity in P images, with known At;



Putting it all together: Equations + Unknowns

For each pixel location1 <i < N, photo1 <j < P:

pixel value for ith pixel, jt" image (known) pixel scene irradiance for for it" pixel (unknown)

\
7q(Zl-j) = log ®; + log A¢;

\K

inverse log C.R.F. (unknown) exposure time of j*" image (known)
We are given: We know:
* N pixels in P images, with known At; Vij ;Q(Zij) — log @; = log At;

|dea:

* Each pixel in each photo is one equation, so we have N - P equations!
* Unknowns: &;, g = N + 256 unknowns



Equations

* Each pixel: g(Zij) — log ®; = log At;
* Let (to simplify notation):

* 9z;; = 9(Zi;),

* ¢; = log ¥;

* 0j = logAt;
* Then, for each pixel:

* gij — e = 0;

* Single egn. in matrix form:
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Equations

e System of equations in
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Solving The System of Equations

pixels exposure st tiveg 9)

« 2S6 + l\\ Coluww\s —_>

_ 7 Vo T
* We can help ensure this

by choosing N, P such ><
that NP > 256 + N

* e.g. N=1000 pixels from P
= 20 photos (20 exposure
settings)

—

5

* To solve this system,
matrix A must be non-
singular \

) )




Smoothness Constrains

ldea: The camera response function smoothly in real cameras
So we add more equations to enforce smoothness

Intuition: Force near-constant rate of change:
9100 — 999 = G101 — G100 < 29100 — G101 — G99 = 0

Qioy-- - - /‘“N
Add these equations 2.4 %/\ ao T T T ——
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Smoothness Constraints

e 256 +N COI\AW\V\S _

* Original equations
gij — € = 0;
(1<i<N,1<j<P)

* Smoothness equations
291 — 91+1 — 91-1 =0
(1 =12, ..254)
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Finally: Merging Multiple Exposures

At = 30s 20s 15s
e Algorithm HDR:  (see Debevec et al. in readings) Vv ‘
for each pixel location i and pixel value Z;:
for each photoj =1, ..., P: g o .

Yiz1 w(Zij)log @jj
Yy W(Zij)

log @; =

Where W(Zij) is a weighting factor that depends on
the pixel value. Pixels close to saturation (255), or
close to the black level (0) are weighted lower.

(Note: in the paper E = ®)



