
High Dynamic Range (HDR)
Topic 3

Week 2 – Jan. 16th, 2019

1



Topic 3: HDR

• High Dynamic Range (HDR)
• Capturing HDR Images
• Computing the Camera Response Function

2



Dynamic Range

• Our visual perception is 
markedly different than that 
we see in photos
• Highlighted by trying to 

photograph scenes with very 
bright & very dark areas
• Dynamic range: ratio 

between the brightest & 
darkest areas of image visible
• Measured in “stops” (like EV):

log$(dynamic range)

3

Debevec et al, SIGGRAPH’97



Dynamic Range

• Human: ~14 EV stops
• 8-bit image: ~6 stops
• EV is a log scale!
• We can’t capture HDR well

• Best sensors capture 14
bits/pixel

• Most images are 8-bit

• We can’t display HDR well
• TV/monitors: 6-10 Stops

4

(T. Borer et al. "A "Display Independent" High Dynamic Range Television System”)

Debevec et al, SIGGRAPH’97

http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP309.pdf


Capturing HDR: The Problem
• Bright pixels: saturate the sensor – no information!
• Dark pixels: are below the threshold required to be represented



Capturing HDR: Multiple Exposures
• Idea: Take photos at multiple EV to capture more dynamic range
• For low EV, bright areas won’t saturate pixels
• For high EV, dark areas will have give enough light to be representable



Displaying HDR: Tone Mapping

• Idea: Like we use a gamma 
function to better display 
linear images, find a mapping 
function that can display 
more tones from our HDR 
image in 8-bit LDR display
• Making this look realistic is 

perhaps the bigger challenge!

R. Fattal et al., “Gradient Domain High Dynamic Range Compression,” Proc. ACM SIGGRAPH 2002



HDR in 2019

• A lot has changed since Fattal et al. in 2002

• Almost every modern smartphone has an HDR capture mode (of 

various extent/quality)

• High-end TVs/monitors now sell with “HDR” feature, movies are 

increasingly captured in HDR (both of these 10-bit, ~10 stops!)



HDR in 2019

• Almost every new 
smartphone has an HDR 
capture mode (of 
various extent/quality)



HDR in 2019

• High-end TVs now sell with “HDR” 
of varying quality
• Movies are captured in HDR 
• Both of these are at best 10-bit, 

~10 stops!
• Still far from human DR!



Topic 3: HDR

• High Dynamic Range (HDR)
• Capturing HDR Images
• Computing the Camera Response Function

11



Capturing HDR: Idea
• Problem: Our cameras can only capture a 

limited representation of the scene 
irradiance Φ, represented by pixel value Z
• In different exposures, a different dynamic 

range for each pixel is captured
• The true scene irradiance for each pixel will 

only be represented within the dynamic 
range of some of these photos
• Idea: Let’s capture many exposures and 

somehow combine them!



Capturing HDR: Multiple Exposures

• What camera settings should we use capture the different exposures?



Capturing HDR: Multiple Exposures
• Capture with different exposure times Δ"
• Assume view doesn’t change (i.e. camera is 

on tripod, or steady), and scene is static
• To combine, we need to know how pixel 

value in each image is relates!

Δ" = 30s 20s 15s

$
$%% s $

&%% s $
$%%% s



Capturing HDR: Multiple Exposures
• Assume we have two photos, A and B, 

where Δ"# = 2Δ"&
• i.e. B has half the exposure duration
• How does each pixel Z((*, ,) in B relate to 

corresponding pixel Z.(*, ,) in A?

Δ"&Δ"#

A B



Capturing HDR: Multiple Exposures
• Z" #, % , Z&(#, %), where Δ*+ = 2Δ*.
• If we assume the camera response function 

is linear then, 
• Z" #, % = 2 Z&(#, %)

• However, we pass the pixel’s response 
through a non-linear gamma function when 
converting from linear RAW image! (see Topic 1)

• If we have the RAW photos we are set
• What if we don’t?

Δ*.Δ*+



Inverse Camera Response Function

• With RAW, response is linear (up to !")
• Without RAWs, knowing the relative 

exposure of two photos relies on us 
knowing the camera response function: 
#$%&'(%
• Recall: #$%&'(% gives the pixel value ()) 

for a given scene irradiance:

) = #$%&'(% Φ∆-
RAW Processed

(i.e. JPEG, PNG)

. = ΦΔ-



Inverse Camera Response Function

• Recall C.R.F. gives the pixel value (!) for a given scene irradiance:

! = #$%&'(% Φ∆+

• We want the the scene irradiance given the pixel value (!), i.e. the 
inverse C.R.F.:

Φ∆+ = #$%&'(%,- !
photons/sec

exposure time
pixel value



Irradiance from Pixel Value
• Assume we have N different exposures
• Each exposure ∆" gives us an estimate of 

the irradiance Φ for the pixel value $:

Φ∆" = &'()*+(,- $

• Some of these estimates will be better than 
others! 
• i.e. estimates from very dark/bright pixels will 

be poor (why?)

Δ" = 30s 20s 15s

-
-// s -

0// s -
-/// s



Merging Multiple Exposures: Debevec et al.
• Algorithm Outline:      (see Debevec et al. in readings)

for each pixel location i and pixel value !":
for each photo # = 1,… , ( with exposure time ∆*+:

estimate Φ"+ at pixel location i given ∆*+, !"
combine estimates Φ"+, -ℎ/0/ # = 1,… , ( to get 

Φ"

Result: HDR image where each pixel is a float based 
on our estimate of the scene irradiance Φ" for each 
pixel

• i is the pixel location, regarding image as flattened 
1D array of pixels

Δ* = 30s 20s 15s

2
233 s 2

433 s 2
2333 s



Topic 3: HDR

• High Dynamic Range (HDR)
• Capturing HDR Images
• Computing the Camera Response Function

22



Estimating the Camera Response Function

• Want to estimate the function:
Φ∆# = %&'()*'+, -

• For every photo we take, we get 
samples of - and ∆#
• Problem: we have no way of 

measuring Φ!
• Solution: we have a lot of data, and 

a couple of tricks!

Δ# = 30s 20s 15s

,
,// s ,

0// s ,
,/// s



Estimating the Camera Response Function
Φ∆# = %&'()*'+, -

How do these quantities change by pixel/photo?

• %&'()*': same for all pixels & photos
• -: different for each pixel and image
• ∆#: different for each photo, same for pixels in

the same photo
• Φ: same for corresponding pixel location across 

different photos (same scene irradiance), 
different across pixel locations

Δ# = 30s 20s 15s

,
,// s ,

0// s ,
,/// s



Trick #1: Log-Inverse Response Function

• We know how to solve linear systems of equations, however, 

!"# $ = Φ ⋅ ∆)
isn’t linear, i.e.:

*#+# + *-+- + …+ */+/ = 0

• Instead we can represent it using log as:

log !"# $ = logΦ + log ∆)

• We will denote 4 $ = log !"# $ as the log-inverse response function:

4($) = logΦ + log ∆)



Trick #2: Discrete Function Approximation

• Our pixels only have 256 discrete values, i.e. ! ∈ ℤ: 0 ≤ ! ≤ 255
• Thus we can treat each value of Z as a different equation, i.e.:

)(! = 0) = logΦ + log ∆3
)(! = 1) = logΦ + log ∆3

⋮
)(! = 255) = logΦ + log ∆3



Computing the Log-Inverse Response Fcn.

• Plot samples of pixel values ! v.s. 
log ∆& + logΦ for 3 different pixel 
locations
• However, we know different pixel 

locations have a different logΦ!
• How will the samples change with 

different values of logΦ?

) ! = logΦ + log ∆&

pixel 1

pixel 2
pixel 3

Different logΦ

Same logΦ, diff log ∆& along a curve



Computing the Log-Inverse Response Fcn.

• With the correct relative logΦ for 
each pixel location, the samples 
line up



Putting it all together

We want to compute:
• ! 0 , ! 1 ,… , ! 255
• logΦ,
We are given:
• N pixel locations + intensity in P images, with known ∆./

inverse log C.R.F. (unknown)

pixel value for ith pixel, jth image (known) pixel scene irradiance for for ith pixel (unknown)

exposure time of jth image (known)

For each pixel location 1 ≤ 1 ≤ 2, photo 1 ≤ 3 ≤ 4:

!(6,/) = logΦ, + log ∆./



Putting it all together: Equations + Unknowns

We are given:
• N pixels in P images, with known ∆"#

Idea:
• Each pixel in each photo is one equation, so we have $ ⋅ & equations!
• Unknowns: Φ(, *è$+ ,-. unknowns

inverse log C.R.F. (unknown)

pixel value for ith pixel, jth image (known) pixel scene irradiance for for ith pixel (unknown)

exposure time of jth image (known)

For each pixel location 1 ≤ 1 ≤ 2, photo 1 ≤ 3 ≤ 4:

*(6(#) = logΦ( + log ∆"#

We know:
∀(# , * 6(# − logΦ( = log ∆"#



Equations

• Each pixel: ! "#$ − logΦ# = log ∆,$
• Let (to simplify notation):
• !-./ ≡ ! "#$ ,
• 2# ≡ logΦ#
• 3$ ≡ log ∆,$

• Then, for each pixel: 
• !#$ − 2# = 3$

• Single eqn. in  matrix form:



Equations

• System of equations in 
matrix form:



Solving The System of Equations

• To solve this system, 
matrix A must be non-
singular
• We can help ensure this 

by choosing !, # such 
that !# ≫ 256 + !
• e.g. N=1000 pixels from P 

= 20 photos (20 exposure 
settings)



Smoothness Constrains

Idea: The camera response function smoothly in real cameras
So we add more equations to enforce smoothness
Intuition: Force near-constant rate of change:

!"## − !%% ≈ !"#" − !"## ⟺ 2!"## − !"#" − !%% ≈ 0

Add these equations
to the system:
2!* − !*+" − !*," = 0
(. = 1,2, … 254)



Smoothness Constraints

• Original equations
!"# − %" = '#
(1 ≤ * ≤ +, 1 ≤ , ≤ -)

• Smoothness equations
2!/ − !/01 − !/21 = 0
(4 = 1,2, … 254)



Finally: Merging Multiple Exposures
• Algorithm HDR:      (see Debevec et al. in readings)

for each pixel location i and pixel value !":

for each photo # = 1,… , (:
log Φ". = / !01 − log ∆4.

log Φ" =
∑678
9 :(<=6)?@A BCD

∑678
9 :(<=6)

Where E !01 is a weighting factor that depends on 
the pixel value. Pixels close to saturation (255), or 
close to the black level (0) are weighted lower. 

(Note: in the paper E ≡ Φ)

Δ4 = 30s 20s 15s

I
IJJ s I

KJJ s I
IJJJ s


