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Topic 1: The Camera

• Pinhole, lens-based cameras & image blur
• Basic camera controls
• Color image acquisition
• Image formation: from photons to digital numbers
• Key image artifacts
• Understanding image noise
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Camera Obscura
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Camera 
Obscura
• Latin: “Dark Room”
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Camera Obscura

• Aristotle (350 B.C.) writes about it
• Photos from August 2017 Solar Eclipse
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The Pinhole Camera

“pinhole” 
aperture

optical axis

world point

projection of 
world point

image plane
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Modern Camera

• Cross-section of the Canon EOS M
• Compound Lens, CMOS sensor…
• Same optical principals

Source: dpreview.com
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Simple Camera with Lens

“thin” lens

world point

projection of 
world point

image plane

! "

optical axis

! = image	distance
" = object distance

plane centre (origin)
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Simple Camera with Lens – Distant

“thin” lens

distant
world point

projection of 
world point

image plane

!

optical axis ...

" = image	distance
! = object distance

"
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Simple Camera with Lens – Distant

“thin” lens

distant
world point

projection of 
world point

image plane
(world point out 

of focus!)

! "

optical axis ...

! = image	distance
" = object distance
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Simple Camera with Lens – Infinity focus

“thin” lens

infinitely far
world point

projection of 
world point

image plane

! " = ∞

...

! = focal	length	of	lens
% = image	distance
" = object distance

! ≡ lim*→,%

optical axis
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Simple Camera with Lens – Infinity focus

“thin” lens

infinitely far
world point

projection of 
world point

image plane

! = ∞

...

$ = focal	length	of	lens
% = image	distance
! = object distance

optical axis

1
$ =

1
% +

1
!Thin	Lens	Law:

$
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Modern Camera

• In practice the image plane is 
changed by moving lens elements, 
rather than moving the sensor
• This is the “focusing” mechanism

Source: dpreview.com
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Focusing

“thin” lens

world pointimage plane

! "

optical axis

! = image	distance
" = object distance

• Imagine slowly moving the image plane
• What does the image of a fixed nearby world point look like?
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Depth of Field

• This effect is called “depth of 
field” in photography (DoF)
• Range of distances over 

which image is in “perfect 
focus”
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Depth of Field

• But why do we see more 
than just what is exactly at 
the distance we focused on?
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Depth of Field

• DoF = range of distances 
where blur < 1 sensor pixel!
• Things that affect DoF:
• pixel size
• aperture 
• lens focal length

• Cellphone camera:
• wide-angle lens (short focal 

length)
• need to fake DoF! (portrait 

mode)
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Modelling Defocus Blur

! ≡ blur circle, diameter of scene point’s image on sensor plane
DoF ≡ range of distance in scene where ! < sensor pixel size 20

Hasinoff & Kutulakos PAMI 10



Portrait Mode: Faking Depth of Field

21



Topic 1: The Camera

• Pinhole, lens-based cameras & image blur
• Basic camera controls
• Color image acquisition
• Image formation: from photons to digital numbers
• Key image artifacts
• Understanding image noise
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Aperture

• The relative size of the area in 
which light is collected through 
the lens
• Typically adjustable with 

aperture ‘blades’
• You can tell how many aperture 

blades a lens has from lens flare!
© Taylor Bennett23

https://www.flickr.com/photos/taylor90/6675835809/


Aperture

• Expressed as !/<value> (f-stop)
• e.g. this lens is 50mm and f/1.8
• f/1.8 is maximum aperture

•èmax ' = )*
+.- ≈ 27.8 mm

© Taylor Bennett24

https://www.flickr.com/photos/taylor90/6675835809/


Shutter Speed

• The duration (∆") of the 
exposure
• How long we allow photons to 

hit the sensor
• Often expressed as fractions of 

a second (i.e. 1/1000s)
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Equal Exposures: 
Aperture and DoF
• Photons ∝ "#∆%
• i.e. get correct exposure 

with different aperture and 
exposure times
• However, get different DoF:

• ↑ " ↓ ∆% ⇒ small DoF
• ↓ " ↑ ∆% ⇒ large DoF

0.5s

2s

↓ " ↑ ∆%
(small aperture, 
long exposure)

↑ " ↓ ∆%
(large aperture, 
short exposure)

D
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ISO Film Speed
& Sensor Sensitivity
• The sensitivity of film/sensor 

to light
• Often expressed by ISO film 

speed (i.e. ISO 400)
• For a given exposure
• High ISO è brighter image
• High ISO è higher noise

• In a digital camera, translates 
to sensor’s signal gain setting
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Topic 1: The Camera

• Pinhole, lens-based cameras & image blur
• Basic camera controls
• Color image acquisition
• Image formation: from photons to digital numbers
• Key image artifacts
• Understanding image noise
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What do we see?

• We model film/sensors 
based on our own visual 
perception
• Everything on Earth has 

evolved in the context of 
the sun’s spectral output
• Digital sensors often have 

wider spectral sensitivity, 
and are restricted to visible 
(IR cut filters)
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What is Colour?

• Rod cells which are very highly sensitive to 
photos, used in dark. No colour vision!
• Cone cells, 3 types have different spectral 

sensitivity, roughly correspond to “RGB”
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Color image acquisition
• All sensor pixels have same 

response curve – i.e. are 
monochromatic!
• Typically each pixel is made 

sensitive to one of R, G or B by 
placing filters over individual 
pixels
• Typical Bayer filter has 25% red, 

25% blue and 50% green
• Full-colour images by 

computationally filling in missing 
R/G/B: “demosaicing”
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Cross-section of a
CMOS Image Sensor
Back-illuminated structure
Aka. back-side illuminated (BSI)
CMOS sensor

1. Retina
2. Nerve fibers
3. Optic nerves
4. Blind spot

Vertebrate vs. Cephalopod
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RAW vs. Developed Images

The color image 
before “developing” 
(linear RAW image)
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RAW vs. Developed Images

The color image 
before “developing” 
(contrast-enhanced)
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RAW vs. Developed Images

The color image 
after “developing” :
Demosaicing
+
Intensity mapping
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Topic 1: The Camera

• Pinhole, lens-based cameras & image blur
• Basic camera controls
• Color image acquisition
• Image formation: from photons to digital numbers
• Key image artifacts
• Understanding image noise
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Digital Sensors: Photons à Digital Value

• Arriving photons cause photo-electrons (due to photoelectric effect)
• Charge accumulates as more photons hit the photo-diode
• After exposure time, amplifier converts charge to measurable voltage
• This voltage is converted to digital reading by an A-to-D converter

(a.k.a. “data number”, 
or DN)
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Photo-electrons to Radiant Power (Flux)

Φ = #
$ %

& ', ) * ' +()) .' .)

pixel footprint wavelength

incident spectral irradiance
(photons/s at given wavelength)

spatial response 
at collection site 
(unitless)

quantum device efficiency
(electrons collected per incident 
photon at given wavelength)

(DN)
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Quantum Efficiency Curves

(Sony, 2012)
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Lighting Levels vs. Average Photon Counts

(Assuming: Q " = 0.5, ( = 1*m2, ∆, = 1/50 sec, surface albedo = 0.5, aperture = ./2.1)

Φ∆, =
Cossairt et al., “When Does Computational Imaging Improve Performance?”, 

IEEE transactions on Image Processing (TIP), May 2012

Illuminance/irradiance

Φ Φ∆,
(DN)
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Digital Sensors: Photons à Digital Value

Φ Φ∆# + %&

%& = black level: non-photoelectric (i.e. electrons) current from photo diode
%( = saturation current: maximum non-discarded current from photodiode
) = amplifier gain: #electrons/DN or ISO (see http://clarkvision.com/articles/iso)

min(Φ∆# + %&, %()
min Φ∆# + %&, %(

)

black level saturation
current gain

DN = min Φ∆# + %&, %(
)

Note: DN obtained above has a linear relationship (up to saturation) with flux

(DN)
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http://clarkvision.com/articles/iso


Linear Images Don’t Look good!
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• The human visual system (HVS) 
doesn’t have a linear response



Gamma Correction

43

• The human visual 
system (HVS) doesn’t 
have a linear 
response
• DNs are passed 

through a “gamma 
function” to 
compensate for HVS
• ! "# = %("#)(/*



Digital Sensors: Gamma Correction

Φ Φ∆# + %& min(Φ∆# + %&, %,)
min Φ∆# + %&, %,

.

black level saturation
current gain

DN = min Φ∆# + %&, %,
.

2 34 = 2( min Φ∆# + %&, %,. )gamma correction:

This is also called the camera response function

(DN)
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Digital Sensors: Camera Response Functions

Grossberg et al., Modeling the Space of Camera Response Functions, PAMI 2004
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Topic 1: The Camera

• Pinhole, lens-based cameras & image blur
• Basic camera controls
• Color image acquisition
• Image formation: from photons to digital numbers
• Key image artifacts
• Understanding image noise
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• Scene points of 
interest are “out of 
focus”
• not within the Dof

Defocus Blur

4 sec @ f11 (ISO 100) 4 sec @ f11 (ISO 100)

subject in focus subject out of focus
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Motion blur

• Camera moves 
significantly during 
exposure time
• More likely with:
• Long exposures
• Long focal length 

(zoom)

4 sec @ f11 (ISO 100) 4 sec @ f11 (ISO 100)

camera on tripod camera hand-held
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Pixel noise

4 sec @ f11 (ISO 100) 1/15 sec @ f11 (ISO 1600)

ideally-exposed photo under-exposed photo

49

• Incorrect exposure, 
not enough photons 
reaching sensor
• High ISO (gain) 

causes noise



What’s Going on in These Photos?
https://petapixel.com/2014/10/13/math
-behind-rolling-shutter-phenomenon/

www.silent9.com Joel Johnson
50

https:///
https://petapixel.com/2014/10/13/math-behind-rolling-shutter-phenomenon/


Rolling Shutter vs. Global Shutter

https://andor.oxinst.com/learning/view/article/rolling-and-global-shutter
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https://andor.oxinst.com/learning/view/article/rolling-and-global-shutter


Rolling Shutter Timing Diagram

https://www.matrix-vision.com/glossario.html
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https://www.matrix-vision.com/glossario.html


Topic 1: The Camera

• Pinhole, lens-based cameras & image blur
• Basic camera controls
• Color image acquisition
• Image formation: from photons to digital numbers
• Key image artifacts
• Understanding image noise
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Digital Sensors: Sources of Noise

Free electrons due to 
thermal energy

Depends on 
temperature, 
measured in 

electrons/sec,  
independent of Φ∆#

Photon arrival 
timing is random

Depends on total 
photon arrivals, i.e. 

Φ∆#

Noise from 
readout 

electronics

Independent
Of
Φ∆#

Amplifier, A-to-
D, quantization 

noise 

Independent
of 
Φ∆#

(DN)

54

Hasinoff et al, CVPR2010



Sources of Noise: Photon (a.k.a. Shot) Noise

Photon arrival 
timing is random

• Shot noise is Poisson distribution with mean Φ∆#
• Poisson: * k events in ∆#, mean + = -.

/! 1
2-

• * #received photons = k = 3∆4.
/! 123∆4

• Largest source of noise for high exposures

(DN)
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Hasinoff et al, CVPR2010



Sources of Noise: Photon (a.k.a. Shot) Noise

Photon arrival 
timing is random

• For	large	enough	mean	- (Φ∆1):	
Poisson(-) ≈ Normal(9 = -, < = -)
• Can approximate with Normal distribution 

for large Φ∆1
http://www.boost.org/doc/libs/1_55_0/libs/math/doc/html/math_toolkit/dist_ref/dists/poisson_dist.html

(DN)

56

Hasinoff et al, CVPR2010

http://www.boost.org/doc/libs/1_55_0/libs/math/doc/html/math_toolkit/dist_ref/dists/poisson_dist.html


Sources of Noise: Dark Current Noise

Free electrons due to 
thermal energy

• Depends on temperature
• Poisson distribution with mean !∆#
• ! is thermal electron rate (electrons/s)

• $ #received thermal electrons = k = &∆'(
)! +

,&∆'

(DN)
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Hasinoff et al, CVPR2010



Sources of Noise: Readout Noise

Noise from 
readout 

electronics

• Normal distribution with ! = 0, % = %&
• Only depends on characteristics of electronics

(DN)
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Hasinoff et al, CVPR2010



Sources of Noise: ADC & Quantization Noise

Amplifier, ADC, 
quantization 

noise

• Normal distribution with ! = 0, % = %&'(
• Amplifier noise (depends on gain/ISO) is largest 

source of noise for low exposures

(DN)
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Hasinoff et al, CVPR2010



Sources of Noise: Putting it all Together

Free electrons due to 
thermal energy

Photon arrival 
timing is random

Noise from 
readout 

electronics

Amplifier, A-to-
D, quantization 

noise

Poisson ! = Φ∆%
Large Φ∆%:

≈ Normal . = !, 0 = !

Normal(. = 0, 0 = 03)Poisson ! = 5∆%
Large D∆%:

≈ Normal . = !, 0 = !

Normal(. = 0, 0 = 0789)

(DN)
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Hasinoff et al, CVPR2010



Sources of Noise: E.g., Canon EOS 5D Mark 2

61http://www.clarkvision.com

!"#
$% + $'() ⋅ # log.

/01 234536247
min 234536247 = log.

!"
$% + $'() ⋅ #

(DN)

Hasinoff et al, CVPR2010

http://www.clarkvision.com/


Putting It All Together

mean(!")= min{() + +, + -,, (/}
variance(!")= +, + -, + () + 123 + 14563 ⋅ 83

mean(-9)= min{:;<=><5>? , :@? }
variance(-9)= =>

?A +
5>
?A +

:;<BCA
?A + 14563

62

(DN)

Photon term & dark current term are additive 
Hasinoff et al, CVPR2010

Hasinoff et al, CVPR2010



Quantifying the Effect of Noise: the SNR

• Signal-to-noise ratio (SNR) = 10 log&'
()*+ ,- .

/*01*+2) ,-

mean(34)= min{:;<=><,>
?

, :A
?
}

variance(34)= =>
?.
+ ,>

?.
+ :;<DE.

?.
+ FG,HI
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Hasinoff et al, CVPR2010



Quantifying the Effect of Noise: Example

64Hasinoff et al, CVPR2010



Putting It All Together
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• Most common (but inaccurate) simplifications:
• Ignore photon + dark current
• Ignore camera response function

mean(!")= min{()*+,*-,. , (0. }
variance(!")= +,

.2 +
-,
.2 +

()*452
.2 + 67-89

65

Hasinoff et al, CVPR2010


