The Camera

Topic 1 Week 1 – Jan. 9th, 2019

Topic 1: The Camera

- Pinhole, lens-based cameras & image blur
- Basic camera controls
- Color image acquisition
- Image formation: from photons to digital numbers
- Key image artifacts
- Understanding image noise

Camera Obscura

Camera Obscura

• Latin: "Dark Room"

Light Bulb, 1991

Camera Obscura

- Aristotle (350 B.C.) writes about it
- Photos from August 2017 Solar Eclipse

The Pinhole Camera

Modern Camera

- Cross-section of the Canon EOS M
- Compound Lens, CMOS sensor...
- Same optical principals

Simple Camera with Lens

u = image distance d = object distance

Simple Camera with Lens – Distant

Simple Camera with Lens – Distant

Simple Camera with Lens – Infinity focus

Modern Camera

- In practice the image plane is changed by moving lens elements, rather than moving the sensor
- This is the "focusing" mechanism

Source: dpreview.com

Focusing

- Imagine slowly moving the image plane
- What does the image of a fixed nearby world point look like?

u = image distance d = object distance

Depth of Field

- This effect is called "depth of field" in photography (DoF)
- Range of distances over which image is in "perfect focus"

Depth of Field

 But why do we see more than just what is exactly at the distance we focused on?

Depth of Field

- DoF = range of distances where blur < 1 sensor pixel!
- Things that affect DoF:
 - pixel size
 - aperture
 - lens focal length
- Cellphone camera:
 - wide-angle lens (short focal length)
 - need to fake DoF! (portrait mode)

Modelling Defocus Blur

Hasinoff & Kutulakos PAMI 10

 $\sigma \equiv$ blur circle, diameter of scene point's image on sensor plane DoF \equiv range of distance in scene where σ < sensor pixel size

Portrait Mode: Faking Depth of Field

Topic 1: The Camera

- Pinhole, lens-based cameras & image blur
- Basic camera controls
- Color image acquisition
- Image formation: from photons to digital numbers
- Key image artifacts
- Understanding image noise

Aperture

 The relative size of the area in which light is collected through the lens

ATE-1

Canon

FD

SNET

50mm

7....

NONA

Taylor Bennett

ANON LENS

S

- Typically adjustable with aperture 'blades'
- You can tell how many aperture blades a lens has from lens flare!

Aperture

Expressed as *f* / <value> (f-stop)

ATE-1

Canon

FD

SNET

50mm

7. 1.0

MONA

© Taylor Bennett

CANON LENS

SOAM

S

- e.g. this lens is 50mm and f/1.8
- f/1.8 is maximum aperture
- \rightarrow max(D) = $\frac{50}{1.8} \approx 27.8$ mm

Shutter Speed

- The duration (Δt) of the exposure
- How long we allow photons to hit the sensor
- Often expressed as fractions of a second (i.e. 1/1000s)

Equal Exposures: Aperture and DoF

- Photons $\propto D^2 \Delta t$
- i.e. get correct exposure with different aperture and exposure times
- However, get different DoF:
 - $\uparrow D \downarrow \Delta t \Rightarrow \text{small DoF}$
 - $\downarrow D \uparrow \Delta t \Rightarrow \text{large DoF}$

 $\downarrow D \uparrow \Delta t$ (small aperture, long exposure)

 $\uparrow D \downarrow \Delta t$ (large aperture, short exposure)

ISO Film Speed & Sensor Sensitivity

- The sensitivity of film/sensor to light
- Often expressed by ISO film speed (i.e. ISO 400)
- For a given exposure
 - High ISO → brighter image
 - High ISO → higher noise
- In a digital camera, translates to sensor's signal gain setting

Topic 1: The Camera

- Pinhole, lens-based cameras & image blur
- Basic camera controls
- Color image acquisition
- Image formation: from photons to digital numbers
- Key image artifacts
- Understanding image noise

What do we see?

- We model film/sensors based on our own visual perception
- Everything on Earth has evolved in the context of the sun's spectral output
- Digital sensors often have wider spectral sensitivity, and are restricted to visible (IR cut filters)

What is Colour?

- Rod cells which are very highly sensitive to photos, used in dark. No colour vision!
- Cone cells, 3 types have different spectral sensitivity, roughly correspond to "RGB"

Color image acquisition

- All sensor pixels have same response curve – i.e. are monochromatic!
- Typically each pixel is made sensitive to one of R, G or B by placing filters over individual pixels
- Typical Bayer filter has 25% red, 25% blue and 50% green
- Full-colour images by computationally filling in missing R/G/B: "demosaicing"

Cross-section of a CMOS Image Sensor

Back-illuminated structure Aka. back-side illuminated (BSI) CMOS sensor

- 1. Retina
- 2. Nerve fibers
- 3. Optic nerves
- 4. Blind spot

Vertebrate vs. Cephalopod

RAW vs. Developed Images

The color image before "developing" (linear RAW image)

RAW vs. Developed Images

The color image before "developing" (contrast-enhanced)

RAW vs. Developed Images

The color image after "developing" : Demosaicing + Intensity mapping

Topic 1: The Camera

- Pinhole, lens-based cameras & image blur
- Basic camera controls
- Color image acquisition
- Image formation: from photons to digital numbers
- Key image artifacts
- Understanding image noise

Digital Sensors: Photons → Digital Value

- Arriving photons cause photo-electrons (due to photoelectric effect)
- Charge accumulates as more photons hit the photo-diode
- After exposure time, amplifier converts charge to measurable voltage
- This voltage is converted to digital reading by an A-to-D converter

Photo-electrons to Radiant Power (Flux)

Quantum Efficiency Curves

Lighting Levels vs. Average Photon Counts

(Assuming: $Q(\lambda) = 0.5, \overline{q} = 1 \mu m^2, \Delta t = 1/50$ sec, surface albedo = 0.5, aperture = f/2.1)

Cossairt et al., "When Does Computational Imaging Improve Performance?",

IEEE transactions on Image Processing (TIP), May 2012

Digital Sensors: Photons \rightarrow Digital Value

 I_0 = black level: non-photoelectric (i.e. electrons) current from photo diode I_m = saturation current: maximum non-discarded current from photodiode g = amplifier gain: #electrons/DN or ISO (see <u>http://clarkvision.com/articles/iso</u>)

Note: DN obtained above has a linear relationship (up to saturation) with flux

Linear Images Don't Look good!

 The human visual system (HVS) doesn't have a linear response

Gamma Correction

- The human visual system (HVS) doesn't have a linear response
- DNs are passed through a "gamma function" to compensate for HVS
- $f(DN) = \beta(DN)^{1/\gamma}$

Digital Sensors: Gamma Correction

gamma correction:
$$f(DN) = f(\left\lfloor \frac{\min(\Phi\Delta t + I_0, I_m)}{g} \right\rfloor)$$

This is also called the camera response function

Digital Sensors: Camera Response Functions

Grossberg et al., Modeling the Space of Camera Response Functions, PAMI 2004

Topic 1: The Camera

- Pinhole, lens-based cameras & image blur
- Basic camera controls
- Color image acquisition
- Image formation: from photons to digital numbers
- Key image artifacts
- Understanding image noise

Defocus Blur

- Scene points of interest are "out of focus"
- not within the Dof

subject out of focus

Motion blur

- Camera moves significantly during exposure time
- More likely with:
 - Long exposures
 - Long focal length (zoom)

4 sec @ f11 (ISO 100)

camera hand-held

4 sec @ f11 (ISO 100)

Pixel noise

- Incorrect exposure, not enough photons reaching sensor
- High ISO (gain) causes noise

ideally-exposed photo

4 sec @ f11 (ISO 100)

under-exposed photo

1/15 sec @ f11 (ISO 1600)

What's Going on in These Photos?

https://petapixel.com/2014/10/13/math -behind-rolling-shutter-phenomenon/

Joel Johnson

www.silent9.com

Rolling Shutter vs. Global Shutter

https://andor.oxinst.com/learning/view/article/rolling-and-global-shutter

Rolling Shutter Timing Diagram

https://www.matrix-vision.com/glossario.html

Topic 1: The Camera

- Pinhole, lens-based cameras & image blur
- Basic camera controls
- Color image acquisition
- Image formation: from photons to digital numbers
- Key image artifacts
- Understanding image noise

Digital Sensors: Sources of Noise

Sources of Noise: Photon (a.k.a. Shot) Noise

- Shot noise is Poisson distribution with mean $\Phi\Delta t$
- Poisson: $P(k \text{ events in } \Delta t, \text{ mean } \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$
- $P(\text{#received photons} = k) = \frac{\Phi \Delta t^k}{k!} e^{-\Phi \Delta t}$
- Largest source of noise for high exposures

Sources of Noise: Photon (a.k.a. Shot) Noise

- For large enough mean λ ($\Phi \Delta t$): Poisson(λ) \approx Normal($\mu = \lambda, \sigma = \sqrt{\lambda}$)
- Can approximate with Normal distribution for large $\Phi \Delta t$

56

Sources of Noise: Dark Current Noise

thermal energy

- Depends on temperature
- Poisson distribution with mean $D\Delta t$
 - *D* is thermal electron rate (electrons/s)
- $P(\text{#received thermal electrons} = k) = \frac{D\Delta t^k}{k!}e^{-D\Delta t}$

Sources of Noise: Readout Noise

- Normal distribution with $\mu = 0, \sigma = \sigma_r$
- Only depends on characteristics of electronics

Sources of Noise: ADC & Quantization Noise

- Normal distribution with $\mu = 0, \sigma = \sigma_{ADC}$
- Amplifier noise (depends on gain/ISO) is largest source of noise for low exposures

Sources of Noise: Putting it all Together

60

Sources of Noise: E.g., Canon EOS 5D Mark 2

http://www.clarkvision.com

Putting It All Together

 $mean(e^{-}) = min\{I_0 + \phi t + Dt, I_m\}$ variance(e^{-}) = $\phi t + Dt + I_0 + \sigma_r^2 + \sigma_{ADC}^2 \cdot g^2$

mean(DN) = min{
$$\frac{I_0 + \phi t + Dt}{g}, \frac{I_m}{g}$$
}
variance(DN) = $\frac{\phi t}{g^2} + \frac{Dt}{g^2} + \frac{I_0 + \sigma_r^2}{g^2} + \sigma_{ADC}^2$

Photon term & dark current term are additive Hasinoff et al, CVPR2010

62

Quantifying the Effect of Noise: the SNR

• Signal-to-noise ratio (SNR) = $10 \log_{10} \frac{mean(DN)^2}{variance(DN)}$

$$mean(DN) = min\{\frac{I_0 + \phi t + Dt}{g}, \frac{I_m}{g}\}$$
$$variance(DN) = \frac{\phi t}{g^2} + \frac{Dt}{g^2} + \frac{I_0 + \sigma_r^2}{g^2} + \sigma_{ADC}^2$$

Quantifying the Effect of Noise: Example

Figure 2. SNR for the Canon 1D Mark III, at various ISO settings, as a function of the radiant power from the scene, Φ . Left: Exposure time adjusted for each ISO to keep $\Phi t/g$ constant (*e.g.*, at ISO 800, we expose for 1/8 the time as for ISO 100). In this setting, higher ISOs record less electrons and so have lower SNR. **Right:** Exposure time held constant, so that all ISOs record the same number of electrons. Higher ISOs have higher SNR for a given scene brightness, especially in the darkest parts of the scene, but they also lead to earlier pixel saturation.

Putting It All Together

- Most common (but inaccurate) simplifications:
 - Ignore photon + dark current
 - Ignore camera response function

$$mean(DN) = min\{\frac{I_0 + \phi t + Dt}{g}, \frac{I_m}{g}\}$$
$$variance(DN) = \frac{\phi t}{g^2} + \frac{Dt}{g^2} + \frac{I_0 + \sigma_r^2}{g^2} + \sigma_{ADC}^2$$