
CSC320 — Introduction to Visual Computing, Winter 2019

Assignment 2: Image Inpainting

Posted: Tuesday, February 5, 2019
Due: 12:00pm, Friday, March 1, 2019
Late policy: 15% marks deduction per 24hrs, submission not accepted if > 5 days late

In this assignment you will implement and experiment with an image inpainting tool. The tool is
based on the Exemplar-Based Image Inpainting technique by Criminisi el al. and will be discussed
in tutorials this week. Your specific task is to complete the technique’s implementation in the starter
code. The starter code is based on OpenCV and the Kivy user interface design library.

Goals: The goals of the assignment are to (1) get you familiar with reading and understanding a
research paper and (partially) implementing the technique it describes; (2) learn how to implement
basic operations such as computing image gradients and curve normals; (3) learn how to assess your
implementation’s correctness and the overall technique’s failure points; and (4) get familiar with the
event-based programming model used by typical user interfaces.

Important: You are advised to start immediately by reading the paper (see below). The next
step is to run the reference solution as well as the starter code, and compare the differences in how
they behave (e.g., their choice of patches for each iteration). As in Assignment 1, you only need to
understand a relatively small part of the code you are given. Once you “get the hang of it,” the
programming component of the assignment should not be too hard as there is relatively little python
coding to do. What will take most of the time is internalizing exactly what you have to do, and how.

Testing your implementation on CDF: Unfortunately, there are some restrictions when using
Kivy. The library relies on OpenGL and graphics cards and imposes some restrictions on what
computers can be used, and how they can be used. Specifically, you will not be able to run a kivy-
based executable remotely via ssh. We have also found that some of the CDF computers will give
you an error because of the configuration of their GPU cards. We noticed this problem in BA2220
and BA3200 but the executable has been successfully tested in BA2210 and BA3175. That being
said, the code is fully cross-platform so if you have run it successfully on your computer it should
work fine on CDF too.

Starter code & the reference solution

Use the following sequence of commands on CDF to unpack and run the starter code:

> cd ~

> tar xvfz inpainting.tar.gz

> rm inpainting.tar.gz

> cd CS320/A2/code

> python viscomp-gui.py -- --usegui

Consult the file 320/A2/code/README 1st.txt for details on how the code is structured and for
guidelines about how to navigate it. In addition to the starter code, I am providing a reference
solution in compiled, statically-linked binary format. The reference solution is available for OSX
(CS320/A2/code/viscomp-gui.osx, UI not implemented in this version, but you can step through
to see how the algorithm behaves) and for CDF/Linux (will be uploaded in a separate tarfile A2-
reference.cdf.tgz). You should run the binary to see how your own implementation should behave,

1

and to make sure that your implementation produces the correct output. That being said, you should
not expect your implementation to produce exactly the same output as the reference solution as tiny
differences in implementation might lead to slightly different results. This is not a concern, however,
and the TAs will be looking at your code as well as its output to make sure what you are doing is
reasonable.

Important: For the CDF executable to run successfully, you need to copy the directory A2/code/kv
from your starter code to the unpacked directory viscomp-gui.cdf/.

For those of you who do not have access to OS X, or who are not currently at a CDF computer, the
file A2-referece results.tar.gz contains screenshots of what the reference implementation produces at
various stages of its execution.

320/A2/CHECKLIST.txt: Please read this form carefully. It includes information on the course’s
Academic Honesty Policy and contains details the distribution of marks in the assignment. You will
need to complete this form prior to submission, and will be the first file markers look at when grading
your assignment.

Part A: Kivy-Based User Interface (15 Marks)

Part A.1 The Run button (5 Marks)

The GUI is supposed to have a clickable ‘Run’ button at its lower-left corner, that is currently black.
Clicking on that button should run the algorithm. If the method is not successful (e.g., because one
of its input images is missing) a popup window should be displayed with an error message. You
need to extend the starter code to add this button to the GUI, and make sure it has the correct
functionality. In particular, your GUI’s behavior after pressing the button should be identical to the
one of the reference implementation. To do this, you will need to complete the Kivy description file
(kivy/viscomp.kv) and the file controlling the Kivy widgets (inpaintingui/widgets.py).

Part A.2 The Crosshairs (10 Marks)

After loading an image and clicking on it with the left mouse button, a red crosshair should ap-
pear, along with some text that shows the image coordinates of the pixel that was clicked. In
the reference implementation, the crosshairs disappear after the button is released but in your
implementation they never get erased. You need extend the starter code (kivy/viscomp.kv and
inpaintingui/viewer.py) to ensure the crosshairs are erased correctly.

Part B: Exemplar-Based Image Inpainting (85 Marks)

The technique is described in full detail in the following paper (included with your starter code and
also available here):

A. Criminisi, P. Pérez and K. Toyama, “Region Filling and Object Removal by Exemplar-Based
Image Inpainting,” IEEE Transactions on Image Processing, vol. 13, no. 9, 2004.

You should read Sections I and II of the paper right away to get a general idea of the principles
behind the method. Section II, in particular, is very important because it introduces the notation
used in the rest of the paper as well as the starter code. Section III describes the algorithm in detail,
with pseudocode shown in Table I. The starter code implements exactly what is shown in Table I;
the only thing left for you to implement is the term D(p) in Eq. (1). Sections IV and V are not

2

https://drive.google.com/drive/u/0/folders/1JrhLtEl4SOjnglQDDq6xI_UZInvgp8tF

strictly necessary to read, but they do show many results that should give you more insight into how
your implementation is supposed to behave.

Part B.1. Programming Component (70 Marks)

You need to complete the implementation of three functions detailed below. A skeleton of all three
is included in file 320/A2/code/inpainting/compute.py. This file is where your entire implementation
will reside.

In addition to these functions, you will need to copy a few lines of code from your A1 implementation
that are not provided in the starter code. This requires no effort other than verbatim line-by-line
copy from your existing code. See 320/A2/code/README 1st.txt for details.

Part B.1.1. Computing Gradients: The computeGradient() function (30 Marks)

This function takes three input arguments: (1) a patch Ψp from the image being inpainted, repre-
sented as a member of the class PSI from file code/inpainting/psi.py ; (2) a binary OpenCV image F
indicating which pixels have already been filled; and (3) the color OpenCV image I being inpainted.
The function returns the gradient with the largest magnitude within patch Ψp:

computeGradient(Ψp, F, I) := ∇Ĩq∗ (1)

where q∗ = arg max
q∈Ψp

F (q)>0

∇Ĩq is valid

|∇Ĩq| (2)

and all gradients are computed on the grayscale version, Ĩ, of color image I.

If image I was a regular image with no “missing” pixels, implementing this function would be
trivial with OpenCV: you would just need the OpenCV function that converts color images (or
image patches) to grayscale, and the OpenCV function that computes the horizontal and vertical
components of the gradient.

The complication here is that not all pixels q in Ψp have been filled. As a result, applying those
OpenCV functions will produce estimates of ∇Ĩq that are incorrect/invalid for some pixels q in that
patch. Your main task in implementing computeGradient() will therefore be to find a way to ignore
those pixels so that the max operation in Eq. (2) is not corrupted by these invalid estimates.

Efficiency considerations: You should pay attention to the efficiency of the code you write but you
will not be penalized for correct, yet inefficient, solutions. Hint: The reference implementation is
10-12 lines of code and includes no explicit looping over pixels.

Part B.1.2. Computing Curve Normals: The computeNormal() function (30 Marks)

Much like the previous function, this function also takes three input arguments and returns a 2D
vector. The function’s arguments are (1) a patch Ψp from the image being inpainted; (2) a binary
OpenCV image F indicating which pixels have already been filled; and (3) a binary OpenCV image
that is non-zero only for the pixels on the fill front δΩ. The function assumes that the patche’s center
p is on the fill front and returns the fill front’s normal np at that pixel.

You are free to use whatever method you wish for estimating the curve normal. This includes using
finite differences between p and its immediate neighbors on the fill front to estimate the tangent and

3

normal at p; fitting a curve to the fill front in the neighborhood of p and returning its normal at p;
and using any built-in OpenCV functions you wish for parts of these computations.

Hint: Depending on how it is implemented this function may involve a couple dozen lines of code,
but can potentially be much less (and, of course, much more).

Part B.1.3. Computing Pixel Confidences: The computeC() function (10 Marks)

This function takes three input arguments and returns a scalar. The function’s arguments are (1)
a patch Ψp from the image being inpainted; (2) a binary OpenCV image F indicating which pixels
have already been filled; and (3) an OpenCV image that records the confidence of all pixels in the
inpainted image I. It returns the value of function C(p) shown on page 4 of the paper, i.e., it
assumes that the confidence of unfilled pixels is zero and returns average confidence of all pixels in
patch Ψp.

Hint: The reference implementation is less than 5 lines of code and includes no explicit looping over
pixels.

Part B.2.1. Experimental evaluation (5 Marks)

Your task here is to put the inpainting method to the test by conducting your own experiments.
Specifically, you need to do the following:

1. Run your inpainting implementation for 100 iterations on the test image pairs (input-color.jpg,
input-alpha.bmp), and (Kanizsa-triangle-tiny.png, Kanizsa-triangle-mask-tiny.png). Save the par-
tial results to directory 320/A2/report using the following file naming convention: X.inpainted.png,
X.fillFront.png, X.confidence.png, X.filled.png where X is either input or Kanizsa. Put these 8
images in the pdf report (see part 2.2).

2. Capture two photos, Source1 and Source2, with your own camera. Any camera will do—cellphone,
point-and-shoot, action camera, etc. Be sure to reduce their size to something on the order of
300× 200 pixels or less so that execution time is manageable.

3. Create binary masks, Mask1 and Mask2, to mask out one or more elements in these photos. Use
any tool you wish for this task.

4. Important: Your source photos and masks should not be arbitrary. You should choose them as
follows: (a) the region(s) to be deleted should not be just constant-intensity regions, which are
trivial to inpaint; (b) the pair Source1,Mask1 should correspond to a “good” case for inpainting,
i.e., should be possible to find a patch radius that produces an inpainted image with (almost) no
obvious seams or other visible artifacts; and (c) the pair Source2,Mask2 should correspond to a
“bad” case for inpainting, i.e., it should not be possible to find a patch radius that produces an
inpainted image free of very obvious artifacts.

5. Run the inpainting algorithm on these two input datasets. You are welcome to use the refer-
ence implementation for these experiments (i.e., you don’t need to have your code fully func-
tional in order to get started on this part of the assignment). Save the two sources, masks
and inpainting results to directory 320/A2/report using the file names Source1.png, Mask1.png,
Source1.inpainted.png and Source2.png, Mask2.png, Source2.inpainted.png. Put these 6 images in
the pdf report (see part 2.2).

Part B.2.2. Your PDF report (10 Marks)

Your report should include the following: (0) the 14 images from Part 2.1 with thier file names; (1)

4

why you think the pair (Source1,Mask1) represents a good case for inpainting; (2) why you think the
pair (Source2,Mask2) represents a bad case for inpainting; (3) discussion of any visible artifacts in
the results from these two datasets (i.e., what artifacts do you see and why you think they occured).

Place your report in file 320/A2/report/report.pdf. You may use any word processing tool to create
it (Word, LaTeX, Powerpoint, html, etc.) but the report you turn in must be in PDF format.

What to turn in: Use the following sequence of commands on CDF to pack all png files in
320/A2/report and submit:

CHECKLIST.txt

report.pdf

algorithm.py

compute.py

viewer.py

widgets.py

viscomp.kv

Working on non-CDF machines: You are welcome to work on the assignment on a non-CDF
machine. That being said, your implementation must run on the Linux CDF machines in order to
be marked by the TAs. You should therefore test your code on CDF frequently, to make sure it has
no CDF-specific issues.

All required packages have already been installed on CDF/Linux. Here are the steps I followed to
install them on OS X 10.10+ :

1. Install NumPy and related packages for scientific computations:
http://stronginference.com/ScipySuperpack/

2. Install OpenCV 3.1:
http://blogs.wcode.org/2014/10/howto-install-build-and-use-opencv-macosx-10-10/

3. Install Kivy using homebrew and pip (needed for Part B only):
https://kivy.org/docs/installation/installation-osx.html

Freely-available resources on NumPy, OpenCV, Computer Vision Programming, etc:

1. Short NumPy tutorial by Olessia Karpova (CSC420, 2014):
https://github.com/olessia/tutorials/blob/master/numpy_tutorial.ipynb

2. Jan Erik Solem, Programming Computer Vision with Python, O’Reilly Media, 2012 (preprint):
http://programmingcomputervision.com/ (look at Chapters 1 and 10)

3. OpenCV-Python documentation (Intro to OpenCV, Core Operations, Image Processing in OpenCV):
http://docs.opencv.org/3.1.0/d6/d00/tutorial_py_root.html#gsc.tab=0

4. Matplotlib User Guide (especially Chapter 5.5):
http://matplotlib.org/1.5.1/Matplotlib.pdf

5. NumPy Reference Guide (especially Chapters 1.4, 1.5, 3.17.1-3.17.5):
http://docs.scipy.org/doc/numpy/numpy-ref-1.10.1.pdf

5

http://stronginference.com/ScipySuperpack/
http://blogs.wcode.org/2014/10/howto-install-build-and-use-opencv-macosx-10-10/
https://kivy.org/docs/installation/installation-osx.html
https://github.com/olessia/tutorials/blob/master/numpy_tutorial.ipynb
http://programmingcomputervision.com/
http://docs.opencv.org/3.1.0/d6/d00/tutorial_py_root.html#gsc.tab=0
http://matplotlib.org/1.5.1/Matplotlib.pdf
http://docs.scipy.org/doc/numpy/numpy-ref-1.10.1.pdf

